Blog
/
Network
/
October 30, 2024

Post-Exploitation Activities on Fortinet Devices: A Network-Based Analysis

This blog explores recent findings from Darktrace's Threat Research team on active exploitation campaigns targeting Fortinet appliances. This analysis focuses on the September 2024 exploitation of FortiManager via CVE-2024-47575, alongside related malicious activity observed in June 2024.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Oct 2024

Introduction: Uncovering active exploitation of Fortinet vulnerabilities

As part of the Darktrace Threat Research team's routine analysis of October's Patch Tuesday vulnerabilities, the team began searching for signs of active exploitation of a critical vulnerability (CVE-2024-23113) affecting the FortiGate to FortiManager (FGFM) protocol.[1]

Although the investigation was prompted by an update regarding CVE 2024-23113, results of the inquiry yielded evidence of widespread exploitation of Fortinet devices in both June and September 2024 potentially via multiple vulnerabilities including CVE 2024-47575. Analysts identified two clusters of activity involving overlapping indicators of compromise (IoCs), likely constituting unique campaigns targeting Fortinet appliances.

This blog will first highlight the finding and analysis of the network-based indicators of FortiManager post-exploitation activity in September, likely involving CVE 2024-47575. The article will then briefly detail a similar pattern of malicious activity observed in June 2024 that involved similar IoCs that potentially comprises a distinct campaign targeting Fortinet perimeter devices.

Fortinet CVE Disclosures

FortiManager devices allow network administrators to manage Fortinet devices on organizations’ networks.[2] One such subset of devices managed through this method are Fortinet firewalls known as FortiGate. These manager and firewall devices communicate with each other via a custom protocol known as FortiGate to FortiManager (FGFM), whereby devices can perform reachability tests and configuration-related actions and reporting.[3] By default, FortiManager devices operate this protocol via port 541.[4]

Fortinet Product Security Incident Response Team released multiple announcements revealing vulnerabilities within the daemon responsible for implementing operability of the FGFM service. Specifically, CVE 2024-23113 enables attackers to potentially perform arbitrary remote command execution through the use of a specially crafted format string to a FortiGate device running the “fgfm daemon”.[5][6]  Similarly, the exploitation of CVE 2024-47575  could also allow remote command execution due to a missing authentication mechanism when targeting specifically FortiManager devices.[7][8]  Given how prolific both FortiGate and FortiManager devices are within the global IT security ecosystem, Darktrace analysts hypothesized that there may have been specific targeting of such devices within the customer base using these vulnerabilities throughout mid to late 2024.

Campaign Analysis

In light of these vulnerability disclosures, Darktrace’s Threat Research team began searching for signs of active exploitation by investigating file download, lateral movement or tooling activity from devices that had previously received suspicious connections on port 541. The team first noticed increases in suspicious activity involving Fortinet devices particularly in mid-September 2024. Further analysis revealed a similar series of activities involving some overlapping devices identified in June 2024. Analysis of these activity clusters revealed a pattern of malicious activity against likely FortiManager devices, including initial exploitation, payload retrieval, and exfiltration of probable configuration data.

Below is an overview of malicious activity we have observed by sector and region:

Sector and region affected by malicious activity on fortigate devices
The sectors of affected customers listed above are categorized according to the United Kingdom’s Standard Industrial Classification (SIC).

Initial Exploitation of FortiManager Devices

Across many of the observed cases in September, activity began with the initial exploitation of FortiManager devices via incoming connectivity over TLS/SSL. Such activity was detected due to the rarity of the receiving devices accepting connections from external sources, particularly over destination port 541. Within nearly all investigated incidents, connectivity began with the source IP, 45.32.41[.]202, establishing an SSL session with likely FortiManager devices.  Device types were determined through a combination of the devices’ hostnames and the noted TLS certificate issuer for such encrypted connections.

Due to the encrypted nature of the connection, it was not possible to ascertain the exploit used in the analyzed cases. However, given the similarity of activities targeting FortiManager devices and research conducted by outside firms, attackers likely utilized CVE 2024-47575.[9] For example, the source IP initiating the SSL sessions also has been referenced by Mandiant as engaging in CVE 2024-47575 exploitation. In addition to a consistent source IP for the connections, a similar JA3 hash was noted across multiple examined accounts, suggesting a similarity in source process for the activity.

In most cases observed by Darktrace, the incoming connectivity was followed by an outgoing connection on port 443 to the IP 45.32.41[.]202. Uncommon reception of encrypted connections over port 541, followed by the initiation of outgoing SSL connections to the same endpoint would suggest probable successful exploitation of FortiManager CVEs during this time.

Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.
Figure 1: Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.

Payload Retrieval

Investigated devices commonly retrieved some form of additional content after incoming connectivity over port 541. Darktrace’s Threat Research team noted how affected devices would make HTTP GET requests to the initial exploitation IP for the URI: /dom.js. This URI, suggestive of JavaScript content retrieval, was then validated by the HTTP response content type. Although Darktrace could see the HTTP content of the connections, usage of destination port 443 featured prominently during these HTTP requests, suggesting an attempt at encryption of the session payload details.

Figure 2: Advanced Search HTTP log to the exploitation IP noting the retrieval of JavaScript content using the curl user agent.

Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.
Figure 3: Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.

The operators of the campaign also appear to have used a consistent user agent for payload retrieval: curl 8.4.0. Usage of an earlier version of the curl (version 7 .86.0) was only observed in one instance. The incorporation of curl utility to establish HTTP connections therefore suggests interaction with command-line utilities on the inspected Fortinet hosts. Command-line interaction also adds validity to the usage of exploits such as CVE 2024-47575 which enable unauthenticated remote command execution. Moreover, given the egress of data seen by the devices receiving this JavaScript content, Darktrace analysts concluded that this payload likely resulted in the configuration aggregation activity noted by external researchers.

Data Exfiltration

Nearly all devices investigated during the September time period performed some form of data exfiltration using the HTTP protocol. Most frequently, devices would initiate these HTTP requests using the same curl user agent already observed during web callback activity.  Again, usage of this tool heavily suggests interaction with the command-line interface and therefore command execution.

The affected device typically made an HTTP POST request to one or both of the following two rare external IPs: 104.238.141[.]143 and 158.247.199[.]37. One of the noted IPs, 104.238.141[.]143, features prominently within external research conducted by Mandiant during this time. These HTTP POST requests nearly always sent data to the /file endpoint on the destination IPs. Analyzed connections frequently noted an HTTP mime type suggestive of compressed archive content. Some investigations also revealed specific filenames for the data sent externally: “.tm”. HTTP POST requests occurred without a specified hostname. This would suggest the IP address may have already been cached locally on the device from a running process or the IP address was hardcoded into the details of unwarranted code running on the system. Moreover, many such POSTs occurred without a GET request, which can indicate exfiltration activity.

Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.
Figure 4: Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.

Interestingly, in many investigations, analysts noticed a lag period between the initial access and exploitation, and the exfiltration of data via HTTP. Such a pause, sometimes over several hours to over a day, could reflect the time needed to aggregate data locally on the host or as a strategic pause in activity to avoid detection. While not present within every compromise activity logs inspected, the delay could represent slight adjustments in behavior during the campaign by the threat actor.

Figure 5: Advanced search logs showing both the payload retrieval and exfiltration activity, emphasizing the gap in time between payload retrieval and exfiltration via HTTP POST request.

HTTP and file identification details identified during this time also directly correspond to research conducted by Mandiant. Not only do we see overlap in IPs identified as receiving the posted data (104.238.141[.]143) we also directly observed an overlap in filenames for the locally aggregated configuration data. Moreover, the gzip mime type identified in multiple customer investigations also corresponds directly to exfiltration activity noted by Mandiant researchers.

Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.
Figure 6: Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.

Activity detected in June 2024

Common indicators

Analysts identified a similar pattern of activity between June 23 and June 25. Activity in this period involved incoming connections from the aforementioned IP 45.32.41[.]202 on either port 541 or port 443 followed by an outgoing connection to the source. This behavior was then followed by HTTP POSTs to the previously mentioned IP address 158.247.199[.]37 in addition to the novel IP: 195.85.114[.]78  using same URI ‘/file’ noted above. Given the commonalties in indicators, time period, and observed behaviors, this grouping of exploitation attempts appears to align closely with the campaign described by Mandiant and may represent exploitation of CVE 2024-47575 in June 2024. The customers targeted in June fall into the same regions and sectors as seen those in the September campaign.

Deviations in behavior

Notably, Darktrace detected a different set of actions during the same June timeframe despite featuring the same infrastructure. This activity involved an initial incoming connection from 158.247.199[.]37 to an internal device on either port 541 or port 443. This was then followed by an outgoing HTTP connection to 158.247.199[.]37 on port 443 with a URI containing varying external IPs. Upon further review, analysts noticed the IPs listed may be the public IPs of the targeted victim, suggesting a potential form device registration by the threat actor or exploit validation. While the time period and infrastructure closely align with the previous campaign described, the difference in activity may suggest another threat actor sharing infrastructure or the same threat actor carrying out a different campaign at the same time. Although the IP 45.32.41[.]202 was contacted, paralleling activity seen in September, analysts did notice a different payload received from the external host, a shell script with the filename ver.sh.

Figure 7: AI Analyst timeline noting the suspicious HTTP behavior from a FortiManager device involving the IP 158.247.199[.] 37.

Darktrace's depth of detection and investigation

Darktrace detected spikes in anomalous behavior from Fortinet devices within the customer base between September 22 and 23, 2024. Following an in-depth investigation into affected accounts and hosts, Darktrace identified a clear pattern where one, or multiple, threat actors leveraged CVEs affecting likely FortiManager devices to execute commands on the host, retrieve malicious content, and exfiltrate sensitive data. During this investigation, analysts then identified possibly related activity in June 2024 highlighted above.

The gathering and exfiltration of configuration data from network security management or other perimeter hosts is a technique that can enable future access by threat actors. This parallels activity previously discussed by Darktrace focused on externally facing devices, such as Palo Alto Networks firewall devices.  Malicious entities could utilize stolen configuration data and potentially stored passwords/hashes to gain initial access in the future, irrespective of the state of device patching. This data can also be potentially sold by initial access brokers on illicit sites. Moreover, groups can leverage this information to establish persistence mechanisms within devices and host networks to enable more impactful compromise activity.

Uncover threat pattens before they strike your network

Network and endpoint management services are essential tools for network administrators and will remain a critical part of IT infrastructure. However, these devices are often configured as internet-facing systems, which can unintentionally expose organizations networks' to attacks. Internet exposure provides malicious groups with novel entry routes into target environments. Although threat actors can swap vulnerabilities to access target networks, the exploitation process leaves behind unusual traffic patterns, making their presence detectable with the right network detection tools.

By detecting the unusual patterns of network traffic which inevitably ensue from exploitation of novel vulnerabilities, Darktrace’s anomaly-based detection and response approach can continue to identify and inhibit such intrusion activities irrespective of exploit used. Eulogizing the principle of least privilege, configuration and asset management, and maintaining the CIA Triad across security operations will continue to help security teams boost their defense posture.

See how anomaly-based detection can enhance your security operations—schedule a personalized demo today.

Get a demo button for Darktrace

Credit to Adam Potter (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Hyeongyung Yeom (Principal Cyber Analyst & Analyst Team Lead, East Asia), Sam Lister (Senior Cyber Analyst)

Appendix

Model Alerts

  • Anomalous Connection / Posting HTTP to IP without Hostname
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Server Activity / New Internet Facing Server
  • Anomalous Server Activity / Outgoing from Server

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints

IoCs

Indicator – Type - Description

104.238.141[.]143 -  IP Address  - C2 infrastructure

158.247.199[.]37 - IP Address - C2 infrastructure

45.32.41[.]202 - IP Address - C2 infrastructure

104.238.141[.]143/file – URL - C2 infrastructure

158.247.199[.]37/file  - URL - C2 infrastructure

45.32.41[.]202/dom.js – URL - C2 infrastructure

.tm – Filename - Gzip file

MITRE Attack Framework

  • Initial Access
    T1190 Exploiting Public-Facing Application
  • Execution:
    T1059 Command and Scripting Interpreter  (Sub-Techniques: T1059.004 Unix Shell, T1059.008 Network Device CLI)
  • Discovery:
    T1083 File and System Discovery
    T1057 Process Discovery
  • Collection:
    T1005 Data From Local System
  • Command and Control:
    T1071 Application Layer Protocols (Sub-Technique:
    T1071.001 Web Protocols)
    T1573  Encrypted Channel
    T1573.001  Symmetric Cryptography
    T1571 Non-Standard Port
    T1105 Ingress Tool Transfer
    T1572 Protocol Tunnelling 
  • Exfiltration:
    T1048.003 Exfiltration Over Unencrypted Non-C2 Protocol

References

{1} https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575/

{2} https://docs.fortinet.com/document/fortimanager/6.4.0/ports-and-protocols/606094/fortigate-fortimanager-protocol#:~:text=The%20FortiGate%2DFortiManager%20(FGFM),by%20using%20the%20FGFM%20protocol.

{3)https://docs.fortinet.com/document/fortigate/6.4.0/ports-and-protocols/373486/fgfm-fortigate-to-fortimanager-protocol
{4} https://www.fortiguard.com/psirt/FG-IR-24-029
{5} https://www.fortiguard.com/psirt/FG-IR-24-423
{6}https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/fortimanager.pdf

{7} https://doublepulsar.com/burning-zero-days-fortijump-fortimanager-vulnerability-used-by-nation-state-in-espionage-via-msps-c79abec59773

{8} https://darktrace.com/blog/post-exploitation-activities-on-pan-os-devices-a-network-based-analysis

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

October 30, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI