Blog
/
Network
/
October 30, 2024

Post-Exploitation Activities on Fortinet Devices: A Network-Based Analysis

This blog explores recent findings from Darktrace's Threat Research team on active exploitation campaigns targeting Fortinet appliances. This analysis focuses on the September 2024 exploitation of FortiManager via CVE-2024-47575, alongside related malicious activity observed in June 2024.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Oct 2024

Introduction: Uncovering active exploitation of Fortinet vulnerabilities

As part of the Darktrace Threat Research team's routine analysis of October's Patch Tuesday vulnerabilities, the team began searching for signs of active exploitation of a critical vulnerability (CVE-2024-23113) affecting the FortiGate to FortiManager (FGFM) protocol.[1]

Although the investigation was prompted by an update regarding CVE 2024-23113, results of the inquiry yielded evidence of widespread exploitation of Fortinet devices in both June and September 2024 potentially via multiple vulnerabilities including CVE 2024-47575. Analysts identified two clusters of activity involving overlapping indicators of compromise (IoCs), likely constituting unique campaigns targeting Fortinet appliances.

This blog will first highlight the finding and analysis of the network-based indicators of FortiManager post-exploitation activity in September, likely involving CVE 2024-47575. The article will then briefly detail a similar pattern of malicious activity observed in June 2024 that involved similar IoCs that potentially comprises a distinct campaign targeting Fortinet perimeter devices.

Fortinet CVE Disclosures

FortiManager devices allow network administrators to manage Fortinet devices on organizations’ networks.[2] One such subset of devices managed through this method are Fortinet firewalls known as FortiGate. These manager and firewall devices communicate with each other via a custom protocol known as FortiGate to FortiManager (FGFM), whereby devices can perform reachability tests and configuration-related actions and reporting.[3] By default, FortiManager devices operate this protocol via port 541.[4]

Fortinet Product Security Incident Response Team released multiple announcements revealing vulnerabilities within the daemon responsible for implementing operability of the FGFM service. Specifically, CVE 2024-23113 enables attackers to potentially perform arbitrary remote command execution through the use of a specially crafted format string to a FortiGate device running the “fgfm daemon”.[5][6]  Similarly, the exploitation of CVE 2024-47575  could also allow remote command execution due to a missing authentication mechanism when targeting specifically FortiManager devices.[7][8]  Given how prolific both FortiGate and FortiManager devices are within the global IT security ecosystem, Darktrace analysts hypothesized that there may have been specific targeting of such devices within the customer base using these vulnerabilities throughout mid to late 2024.

Campaign Analysis

In light of these vulnerability disclosures, Darktrace’s Threat Research team began searching for signs of active exploitation by investigating file download, lateral movement or tooling activity from devices that had previously received suspicious connections on port 541. The team first noticed increases in suspicious activity involving Fortinet devices particularly in mid-September 2024. Further analysis revealed a similar series of activities involving some overlapping devices identified in June 2024. Analysis of these activity clusters revealed a pattern of malicious activity against likely FortiManager devices, including initial exploitation, payload retrieval, and exfiltration of probable configuration data.

Below is an overview of malicious activity we have observed by sector and region:

Sector and region affected by malicious activity on fortigate devices
The sectors of affected customers listed above are categorized according to the United Kingdom’s Standard Industrial Classification (SIC).

Initial Exploitation of FortiManager Devices

Across many of the observed cases in September, activity began with the initial exploitation of FortiManager devices via incoming connectivity over TLS/SSL. Such activity was detected due to the rarity of the receiving devices accepting connections from external sources, particularly over destination port 541. Within nearly all investigated incidents, connectivity began with the source IP, 45.32.41[.]202, establishing an SSL session with likely FortiManager devices.  Device types were determined through a combination of the devices’ hostnames and the noted TLS certificate issuer for such encrypted connections.

Due to the encrypted nature of the connection, it was not possible to ascertain the exploit used in the analyzed cases. However, given the similarity of activities targeting FortiManager devices and research conducted by outside firms, attackers likely utilized CVE 2024-47575.[9] For example, the source IP initiating the SSL sessions also has been referenced by Mandiant as engaging in CVE 2024-47575 exploitation. In addition to a consistent source IP for the connections, a similar JA3 hash was noted across multiple examined accounts, suggesting a similarity in source process for the activity.

In most cases observed by Darktrace, the incoming connectivity was followed by an outgoing connection on port 443 to the IP 45.32.41[.]202. Uncommon reception of encrypted connections over port 541, followed by the initiation of outgoing SSL connections to the same endpoint would suggest probable successful exploitation of FortiManager CVEs during this time.

Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.
Figure 1: Model alert logs highlighting the incoming connectivity over port 541 to the FortiManager devices followed by outgoing connection to the external IP.

Payload Retrieval

Investigated devices commonly retrieved some form of additional content after incoming connectivity over port 541. Darktrace’s Threat Research team noted how affected devices would make HTTP GET requests to the initial exploitation IP for the URI: /dom.js. This URI, suggestive of JavaScript content retrieval, was then validated by the HTTP response content type. Although Darktrace could see the HTTP content of the connections, usage of destination port 443 featured prominently during these HTTP requests, suggesting an attempt at encryption of the session payload details.

Figure 2: Advanced Search HTTP log to the exploitation IP noting the retrieval of JavaScript content using the curl user agent.

Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.
Figure 3: Cyber AI Analyst investigation into the initial exploitation activity. This incident emphasizes the rare external connectivity over port 443 requesting JavaScript content following the incoming connections over port 541.

The operators of the campaign also appear to have used a consistent user agent for payload retrieval: curl 8.4.0. Usage of an earlier version of the curl (version 7 .86.0) was only observed in one instance. The incorporation of curl utility to establish HTTP connections therefore suggests interaction with command-line utilities on the inspected Fortinet hosts. Command-line interaction also adds validity to the usage of exploits such as CVE 2024-47575 which enable unauthenticated remote command execution. Moreover, given the egress of data seen by the devices receiving this JavaScript content, Darktrace analysts concluded that this payload likely resulted in the configuration aggregation activity noted by external researchers.

Data Exfiltration

Nearly all devices investigated during the September time period performed some form of data exfiltration using the HTTP protocol. Most frequently, devices would initiate these HTTP requests using the same curl user agent already observed during web callback activity.  Again, usage of this tool heavily suggests interaction with the command-line interface and therefore command execution.

The affected device typically made an HTTP POST request to one or both of the following two rare external IPs: 104.238.141[.]143 and 158.247.199[.]37. One of the noted IPs, 104.238.141[.]143, features prominently within external research conducted by Mandiant during this time. These HTTP POST requests nearly always sent data to the /file endpoint on the destination IPs. Analyzed connections frequently noted an HTTP mime type suggestive of compressed archive content. Some investigations also revealed specific filenames for the data sent externally: “.tm”. HTTP POST requests occurred without a specified hostname. This would suggest the IP address may have already been cached locally on the device from a running process or the IP address was hardcoded into the details of unwarranted code running on the system. Moreover, many such POSTs occurred without a GET request, which can indicate exfiltration activity.

Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.
Figure 4: Model alert logs noting both the connection to the IP 158.247.199[.]37 over port 443 without a hostname, and the unusual activity metric describing how the request was made without a prior HTTP GET request. Such activity can indicate malicious data exfiltration.

Interestingly, in many investigations, analysts noticed a lag period between the initial access and exploitation, and the exfiltration of data via HTTP. Such a pause, sometimes over several hours to over a day, could reflect the time needed to aggregate data locally on the host or as a strategic pause in activity to avoid detection. While not present within every compromise activity logs inspected, the delay could represent slight adjustments in behavior during the campaign by the threat actor.

Figure 5: Advanced search logs showing both the payload retrieval and exfiltration activity, emphasizing the gap in time between payload retrieval and exfiltration via HTTP POST request.

HTTP and file identification details identified during this time also directly correspond to research conducted by Mandiant. Not only do we see overlap in IPs identified as receiving the posted data (104.238.141[.]143) we also directly observed an overlap in filenames for the locally aggregated configuration data. Moreover, the gzip mime type identified in multiple customer investigations also corresponds directly to exfiltration activity noted by Mandiant researchers.

Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.
Figure 6: Advanced search logs noting the filename and URL of the posted data to one of the exfiltration IPs. The .tm filename corresponds to the locally stored file on affected FortiManager devices analyzed by external researchers.

Activity detected in June 2024

Common indicators

Analysts identified a similar pattern of activity between June 23 and June 25. Activity in this period involved incoming connections from the aforementioned IP 45.32.41[.]202 on either port 541 or port 443 followed by an outgoing connection to the source. This behavior was then followed by HTTP POSTs to the previously mentioned IP address 158.247.199[.]37 in addition to the novel IP: 195.85.114[.]78  using same URI ‘/file’ noted above. Given the commonalties in indicators, time period, and observed behaviors, this grouping of exploitation attempts appears to align closely with the campaign described by Mandiant and may represent exploitation of CVE 2024-47575 in June 2024. The customers targeted in June fall into the same regions and sectors as seen those in the September campaign.

Deviations in behavior

Notably, Darktrace detected a different set of actions during the same June timeframe despite featuring the same infrastructure. This activity involved an initial incoming connection from 158.247.199[.]37 to an internal device on either port 541 or port 443. This was then followed by an outgoing HTTP connection to 158.247.199[.]37 on port 443 with a URI containing varying external IPs. Upon further review, analysts noticed the IPs listed may be the public IPs of the targeted victim, suggesting a potential form device registration by the threat actor or exploit validation. While the time period and infrastructure closely align with the previous campaign described, the difference in activity may suggest another threat actor sharing infrastructure or the same threat actor carrying out a different campaign at the same time. Although the IP 45.32.41[.]202 was contacted, paralleling activity seen in September, analysts did notice a different payload received from the external host, a shell script with the filename ver.sh.

Figure 7: AI Analyst timeline noting the suspicious HTTP behavior from a FortiManager device involving the IP 158.247.199[.] 37.

Darktrace's depth of detection and investigation

Darktrace detected spikes in anomalous behavior from Fortinet devices within the customer base between September 22 and 23, 2024. Following an in-depth investigation into affected accounts and hosts, Darktrace identified a clear pattern where one, or multiple, threat actors leveraged CVEs affecting likely FortiManager devices to execute commands on the host, retrieve malicious content, and exfiltrate sensitive data. During this investigation, analysts then identified possibly related activity in June 2024 highlighted above.

The gathering and exfiltration of configuration data from network security management or other perimeter hosts is a technique that can enable future access by threat actors. This parallels activity previously discussed by Darktrace focused on externally facing devices, such as Palo Alto Networks firewall devices.  Malicious entities could utilize stolen configuration data and potentially stored passwords/hashes to gain initial access in the future, irrespective of the state of device patching. This data can also be potentially sold by initial access brokers on illicit sites. Moreover, groups can leverage this information to establish persistence mechanisms within devices and host networks to enable more impactful compromise activity.

Uncover threat pattens before they strike your network

Network and endpoint management services are essential tools for network administrators and will remain a critical part of IT infrastructure. However, these devices are often configured as internet-facing systems, which can unintentionally expose organizations networks' to attacks. Internet exposure provides malicious groups with novel entry routes into target environments. Although threat actors can swap vulnerabilities to access target networks, the exploitation process leaves behind unusual traffic patterns, making their presence detectable with the right network detection tools.

By detecting the unusual patterns of network traffic which inevitably ensue from exploitation of novel vulnerabilities, Darktrace’s anomaly-based detection and response approach can continue to identify and inhibit such intrusion activities irrespective of exploit used. Eulogizing the principle of least privilege, configuration and asset management, and maintaining the CIA Triad across security operations will continue to help security teams boost their defense posture.

See how anomaly-based detection can enhance your security operations—schedule a personalized demo today.

Get a demo button for Darktrace

Credit to Adam Potter (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Hyeongyung Yeom (Principal Cyber Analyst & Analyst Team Lead, East Asia), Sam Lister (Senior Cyber Analyst)

Appendix

Model Alerts

  • Anomalous Connection / Posting HTTP to IP without Hostname
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Server Activity / New Internet Facing Server
  • Anomalous Server Activity / Outgoing from Server

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints

IoCs

Indicator – Type - Description

104.238.141[.]143 -  IP Address  - C2 infrastructure

158.247.199[.]37 - IP Address - C2 infrastructure

45.32.41[.]202 - IP Address - C2 infrastructure

104.238.141[.]143/file – URL - C2 infrastructure

158.247.199[.]37/file  - URL - C2 infrastructure

45.32.41[.]202/dom.js – URL - C2 infrastructure

.tm – Filename - Gzip file

MITRE Attack Framework

  • Initial Access
    T1190 Exploiting Public-Facing Application
  • Execution:
    T1059 Command and Scripting Interpreter  (Sub-Techniques: T1059.004 Unix Shell, T1059.008 Network Device CLI)
  • Discovery:
    T1083 File and System Discovery
    T1057 Process Discovery
  • Collection:
    T1005 Data From Local System
  • Command and Control:
    T1071 Application Layer Protocols (Sub-Technique:
    T1071.001 Web Protocols)
    T1573  Encrypted Channel
    T1573.001  Symmetric Cryptography
    T1571 Non-Standard Port
    T1105 Ingress Tool Transfer
    T1572 Protocol Tunnelling 
  • Exfiltration:
    T1048.003 Exfiltration Over Unencrypted Non-C2 Protocol

References

{1} https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575/

{2} https://docs.fortinet.com/document/fortimanager/6.4.0/ports-and-protocols/606094/fortigate-fortimanager-protocol#:~:text=The%20FortiGate%2DFortiManager%20(FGFM),by%20using%20the%20FGFM%20protocol.

{3)https://docs.fortinet.com/document/fortigate/6.4.0/ports-and-protocols/373486/fgfm-fortigate-to-fortimanager-protocol
{4} https://www.fortiguard.com/psirt/FG-IR-24-029
{5} https://www.fortiguard.com/psirt/FG-IR-24-423
{6}https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/fortimanager.pdf

{7} https://doublepulsar.com/burning-zero-days-fortijump-fortimanager-vulnerability-used-by-nation-state-in-espionage-via-msps-c79abec59773

{8} https://darktrace.com/blog/post-exploitation-activities-on-pan-os-devices-a-network-based-analysis

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 20, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  
Credit to Tara Gould (Threat Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github.com/BengaminButton/XillenStealer

https://github.com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI