Blog
/
/
July 22, 2020

Resurgence of Ursnif Banking Trojan "May's Most Wanted Malware"

The Ursnif banking trojan tries to blend into the network as legitimate Zoom and Webex activity, trying to capture credentials. See how Darktrace stops it!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Jul 2020

Earlier this month, Darktrace’s Cyber AI detected the Ursnif banking trojan, described as May’s most wanted malware, making a resurgence across its customers’ networks. This blog follows the malicious activity in one financial services company in the US, detailing how and why Darktrace Antigena stepped in and autonomously stopped the attack in real time.

Banking trojans continue to present a credible and persistent threat to organizations of all sizes across the globe. This attack was delivered via phishing email, which initiated a download of an executable file masquerading as a .cab extension.

This specific banking trojan is particularly sophisticated, with multiple new command and control (C2) domains registered – identifiable because several distinct Domain Generation Algorithms (DGA) were observed across different networks – the majority of which were only registered the day prior to the campaign.

Figure 1: A timeline of the attack

Phishing email catches organizations unaware

The malware itself was delivered via phishing email. The attack was not recognized by antivirus solutions at the time of delivery, slipping through the organization’s perimeter solutions and landing in employees’ inboxes. Unknowingly, an employee opened a disguised attachment containing macros, downloading an executable file masquerading as a .cab extension.

Interestingly, the malware also used new User Agents imitating Zoom and Webex, a clear attempt to blend in with assumed network traffic. After the malware was downloaded, several devices were observed making connections using these Zoom or Webex User Agents to non-Zoom and non-Webex domains, another attempt to blend in.

Figure 2: Darktrace’s Breach Event Log shows a number of models were triggered

Figure 3: Darktrace’s Device Event Log showing the device was connected to Outlook at the time of the executable file download

After the downloads, Darktrace’s AI observed beaconing to rare DGA domains. The majority of these domains were Russian and registered within the previous 24 hours.

Figure 4: A screenshot taken from one of the C2 domains observed, tobmojiol2adf[.]com, which appears to host a login page

Figure 5: The External Sites Summary of one of the C2 domains observed, tobmojiol2adf[.]com, which was identified as 100% rare for the network at the time of the model breach.

This attack managed to evade the rest of the organization’s security stack since the domains observed were recently registered and the majority of the file hashes and IoCs had not yet been flagged by OSINT tools, thus bypassing all signature-based detections. The initial file downloads also purported to be .cab files, but Darktrace’s AI identified that these were in fact executable files.

Multiple Darktrace detections, including the ‘Masqueraded File Transfer’ model and the ‘Initial Breach Chain Compromise’ model, alerted the security team to this activity. At the same time, the models triggered Darktrace’s Cyber AI Analyst to launch an automated investigation into the security incident, which surfaced additional vital information and dramatically reduced time to triage.

Figure 6: The Cyber AI Analyst output showing the subsequent C2 connections made by the device after the executable file download

Figure 7: Model breaches from the affected device, showing the malicious file download and subsequent command and control beaconing activity

Figure 8: Model Breach Event Log, showing Antigena’s response after the masqueraded file download and a new outbound connection

The case for Autonomous Response

The Ursnif banking trojan presents a particularly lethal threat: silent, stealthy, and capable of stealing vital financial information, email credentials, and other sensitive data at machine speeds. The rise of advanced malware like this demonstrates the need for security technology that can stay ahead of attackers. For this organization, the malware download and subsequent command and control activity could have represented the start of a costly attack.

Luckily the organization had Antigena Network installed in active mode. The C2 communications from infected devices were blocked seconds after the initial connection, preventing further C2 activity and the download of any additional malware. Using information surfaced by the Cyber AI Analyst, the security team could catch up and the threat was quickly contained.

This attack highlights the continuously evolving approaches used by malicious actors to evade detection. In the same week as the events explained above, Darktrace identified the Urnsnif malware in numerous other customers in the US and Italy, across multiple industries. Attackers are targeting businesses indiscriminately and are not slowing down.

Thanks to Darktrace analysts Grace Carballo and Hiromi Watanabe for their insights on the above threat find.

Technical details

IoCs:

Commenttobmojiol2adf[.]com – C2 domain, registered July 9
qumogtromb2a[.]com – Not yet registered
amehota2gfgh[.]com – C2 domain, registered July 8
gofast22gfor[.]com – C2 domain, registered July 8
xquptbabzxhxw[.]com – Not yet registered
e9bja[.]com

Masqueraded file download source9ygw2[.]com
Masqueraded file download sourcen2f79[.]com
Masqueraded file download sourceioyyf[.]com
Masqueraded file download sourcehq3ll[.]com
Masqueraded file download sourcehxxp://9ygw2[.]com/iz5/yaca.php?l=kpt1.cab
File path hxxp://e9bja[.]com/iz5/yaca.php?l=kpt4.cab
File path hxxp://n2f79[.]com/iz5/yaca.php?l=kpt1.cab
File path hxxp://ioyyf[.]com/iz5/yaca.php?l=kpt4.cab
File path hxxp://hq3ll[.]com/iz5/yaca.php?l=kpt12.cabFile path

MD5 hashes

  • fa6fc057b3c1bb1e84cc37dbd14e7c10
  • 37c28815f462115ff1439e251324ed5b
  • 40f69d093a720c338963bebb3e274593
  • 5602508f262b92f25dc36c4266f410b4
  • 619e5f5d56de5dfbe7b76bba924fd631
  • 30ea60c337c5667be79539f26b613449
  • 688380643b0d70a0191b7fbbea6fb313
  • 719f36d41379574569248e599767937f
  • 7a7ba75af1210e707c495990e678f83e
  • 7c4207591c6d07ce1c611a8bc4b61898
  • 8eec0a8518e87d7248d2882c6f05a551
  • 94915a540ce01fabec9ba1e7913837ea
  • 94e6d6c3cef950ed75b82428475681c7
  • bac0246599a070c8078a966d11f7089d
  • dc17489e558d0f07b016636bc0ab0dbe
  • dff18317acadc40e68f76d3b33ea4304
  • cee72b840f4e79ed5ffde7adc680a7cd

SHA1 hashes

  • 42dd5e8ad3f0d4de95eaa46eef606e24f3d253f0
  • 97d2158a44b0eaa2465f3062413427e33cc2ac50
  • 435c5ae175b40e5d64907bdb212290af607232eb
  • 4b9845e5e7475156efa468a4e58c3c72cf0d4e7e
  • a0494bf812cf1a5b075109fea1adc0d8d1f236f9
  • 297b1b5137249a74322330e80d478e68e70add0d
  • 46a9c4679169d46563cdebae1d38e4a14ed255c9
  • 4f4f65acf3a35da9b8da460cf7910cd883fe2e46
  • 60aee8045e0eb357b88db19775c0892f6bd388f1
  • 7d92dad4971d3c2abfc368a8f47049032ef4d8a9
  • 9631216035a58d1c3d4404607bd85bf0c80ccfe8
  • aab6a948d500de30b6b75a928f43891f5daaa2a8
  • c31dcf7bc391780ecf1403d504af5e844821e9a4
  • c41a9a7f416569a7f412d1a82a78f7977395ce2a
  • c7323a5596be025c693535fbb87b84beeacc7733
  • d64a6c135d7eac881db280c4cb04443b7d2e2a0b
  • 331ede8915e42d273722802a20e8bb9a448b39c5

Darktrace model breaches

  • Anomalous File/Masqueraded File Transfer
  • Compromise/ Sustained TCP Beaconing Activity to Rare Endpoint
  • Compromise/ HTTP Beaconing to Rare Destination
  • Compromise/ Slow Beaconing Activity to External rare
  • Compromise/ Beaconing Activity to External Rare
  • Device/ Initial Breach Chain Compromise
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI