Blog
/
Network
/
December 11, 2024

Company Shuts Down Cyber-attacks with “Flawless” Detection and Response from Darktrace

This blog explores how Darktrace shut down a major third-party cyber-attack, preventing the deployment of ransomware. Read more to discover how the security team now spends 80-90% of their time working on more strategic projects vs. manual, low-level tasks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Dec 2024

Growing pains: Balancing efficiency with risk  

This organization has recently scaled its operations, and numerous acquisitions have significantly boosted the organization’s capabilities and growth. However, this also creates work and high expectations for the organization’s IT and security teams. Within 12 months of an acquisition, the teams must fully integrate each new business onto the company’s platform. “A huge piece of that integration plan is rolling out our security controls,” said the CISO. “While our goal is to connect those facilities up as quickly as possible to drive efficiency, we also need to implement the proper security controls to protect the enterprise.”

Gap beyond the perimeter  

The organization had established strong security measures to safeguard its perimeter; however, the CISO identified a critical gap in real-time network monitoring. If the perimeter were breached, threats were only discovered after an endpoint was compromised and the issue was manually reported.

As digital transformation progresses, the need to adopt advanced technologies is becoming essential, particularly as organizations begin to open up operational environments to greater connectivity. Many processes still rely on traditional methods, and integrating innovative solutions could drive significant improvements in efficiency and productivity. “We’re committed to adopting cutting-edge technologies,” the CISO explained. “But we understood that without more robust network security controls, opening up our operational environments would expose us to heightened risks, including advanced threats like ransomware.”

Building a layered, proactive security strategy with Darktrace  

To close the gap beyond the perimeter, the company embarked on a free trial with Darktrace. The CISO recalls: “The trials were fantastic. It was obvious that Darktrace was exactly what we needed. The Darktrace team was also very knowledgeable and helpful throughout the process, which was impressive.”  

Today, the organization is using a combination of Darktrace solutions for its layered security approach, including:

Detecting unusual behavior with AI  

Darktrace’s use of machine learning and Self-Learning AI is one of the reasons the company chose Darktrace. Instead of teaching an AI system what an ‘attack’ looks like, training it on large data lakes of thousands of organizations’ data, Darktrace AI learns from the company’s own unique data and user activity to learn and create baseline models of what ‘normal’ looks like for their business.

Darktrace can then detect subtle deviations and unusual activity that signals a possible threat. “That fascinated us because what it really means is this technology doesn’t need to know about every single threat because the threat itself isn’t important, it’s the behavior of the activity that’s important. That capability is unique when it when it comes to threat detection,” said the CISO.

Identifying and mitigating high-impact attack paths

The security team appreciated that with Darktrace they could take a more proactive approach to security by exposing high-risk attack paths through modeling and AI risk assessments. Darktrace / Proactive Exposure Management gives them visibility into vulnerable entry points and assets, identifies active risks, and prioritizes the most important security issues to be addressed.

“Specific users and assets within our business have a higher risk of being targeted by a cyber-attack, for example our executives,” said the CISO. “With Darktrace, we get an adversarial view of our risk. We can see the attack path around those potential targets and proactively take measures to mitigate that vulnerability and prevent an attack.”

Driving up productivity while putting the brakes on cyber-attacks  

The security team collaborated with Darktrace to fine tune the models that really fit their business. With Darktrace now automating most of their threat detection and response efforts, productivity has soared, the security team is now focused on delivering greater value to the business and, most importantly, Darktrace proved it could quickly detect and shut down a major cyber-attack–and do so without impacting business operations.

Fueling team productivity with automation and AI

Prior to using Darktrace, the security team had little visibility into potential risks beyond the perimeter. Today, the team has full control and visibility over the network. “My team is now spending 80-90% of their time doing proactive work because Darktrace is managing the vast majority of our detect and response needs. The team really has faith in the Darktrace system,” said the CISO.  

With less time spent on low-level manual tasks, the security team can now focus on higher priority initiatives. For example, they have expanded their internal vulnerability assessments across the entire group. The team couldn’t focus on this additional audit and vulnerability management work if Darktrace wasn’t taking care of most of their security monitoring. “Darktrace has allowed us to move on to these additional kinds of governance projects that we otherwise would have to hire an army of staff to get through”.

Stopping email threats in their tracks

Using Darktrace / EMAIL, the company has identified and blocked a significant percentage of emails that were making it past their native email filters. “Darktrace is especially good at detecting impersonation emails, and we really appreciate its ability to automatically remove suspicious emails directly from a user’s inbox. It adds an extra level of confidence,” said the CISO.

Self-Learning AI understands anomalies within unique communication patterns to stop known and unknown threats. For example, when an employee sent an email to a brand new domain, Darktrace identified the behavior as unusual and inconsistent with baseline models and blocked the email.

Darktrace passes the biggest test of all

In 2024, the company experienced the value of the security system firsthand when attackers exploited a vulnerability in a third-party remote support solution that they was using. This solution provided remote access and tech support capabilities. If successful, the attackers could have infiltrated high-value end points and created their own administrative user, giving them full control over the server.

“We first became aware of the attack when Darktrace notified us of unusual behavior coming from the remote support server,” said the CISO. The attackers were attempting to put backdoors onto the service with the intent of selling access to the highest bidder who would then install ransomware on their servers. It all happened very quickly, as the attackers tried to connect to the internal network and other servers, while also firing off a host of other actions, like PowerShell commands, to escalate their privileges.  

“Darktrace worked flawlessly. There was no chance that ransomware was ever going to come in,” the CISO said. “Even though there was no signature to really look at, Darktrace realized this was not normal behavior for this server, shutting down connections and doing everything it could do to stop the attack.” Within eight hours, the security team identified and stopped the attack, severed its connection to the third-party solution, and completed additional analysis and clean-up. “In addition to our own investigation, third parties like our external SOC and legal department also confirmed that Darktrace performed as expected. We were able to report back to the executive team that there was zero risk that any data or systems were compromised.”

Post-attack, there was no need to make any changes to Darktrace. The team consistently reviews its models and baselines, often collaborating with Darktrace to make adjustments when needed to continuously improve performance. “Because of this relationship and constant engagement with Darktrace’s technical teams, we didn't have to go back and ask: ‘why wasn’t this updated’ or ‘why didn’t this model work.’ The models worked.”

His advice to other organizations facing similar challenges? First, focus on updating, patching, and vulnerability management, and act quickly when vulnerabilities are identified. His second piece of advice: “have an automated detection system like Darktrace in place so you can respond at the speed that these attacks evolve. Humans can no longer keep up with a scripted attack as it moves around and tries to compromise items on your network. You need the right technology to fight these types of attacks.”

Dynamic capabilities for a dynamic future

Real-time playbooks

With a proactive, enterprise-wide security strategy in place, the CISO now has the time to think about future projects and innovations. He’s particularly interested in the idea of generating playbooks on the fly in response to real-time events. He believes cyber-attacks are far too varied for a static playbook to be useful; when an attack strikes, teams need to quickly understand exactly what’s in front of them and how to shut it down. “This fits into our future cybersecurity strategy, and Darktrace is the only company I’ve seen talking about building playbooks dynamically. This kind of technology would really help bring our cybersecurity strategy full circle.”

“Darktrace ’s technology, experience and expertise is helping us staying ahead of cyber-attacks, minimizing our risk and driving greater productivity for our team,” said the CISO. In collaboration with Darktrace, the team have created a security foundation that is both powerful and agile. “While Darktrace is detecting and responding to attacks targeting our business today, we know that it’s always learning, adapting and scaling to ensure we’re protected tomorrow. That gives me peace of mind and the freedom to focus on our future.”

Download the Darktrace / NETWORK Solution Brief

Darktrace / NETWORK solution brief screenshot

Protect in real time: Defend against known and emerging threats without relying on historical data or external intelligence.

Full visibility: Gain comprehensive insights across all network environments, including on-premises, cloud, and remote devices.

AI-powered efficiency: Streamline incident response with AI automation, saving time and resources while ensuring minimal disruption to operations.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI