Blog
/
Network
/
January 17, 2024

Detecting Trusted Network Relationship Abuse

Discover how Darktrace DETECT and the SOC team responded to a network compromise via a trusted partner relationship with this case study.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Jan 2024

Trusted relationships between organizations and third parties have become an increasingly popular target for cyber threat actors to gain access to sensitive networks. These relationships are typically granted by organizations to external or adjacent entities and allow for the access of internal resources for business purposes.1 Trusted network relations can exist between constituent elements of an overarching corporation, IT-service providers and their customers, and even implicitly between IT product vendors and their customers.

Several high-profile compromises have occurred due to the leveraging of privileged network access by such third parties. One prominent example is the 2016 DNC network attack, in which the trust between the Democratic Congressional Campaign Committee (DCCC) and the Democratic National Committee (DNC) was exploited. Supply chain attacks, which also leverage the implicit trust between IT vendors and customers, are also on the rise with some estimates projecting that by 2025, almost half of all organizations will be impact by supply chain compromises.2 These trends may also be attributed to the prevalence of remote work as well as the growth in IT-managed service providers.3

Given the nature of such network relationships and threat techniques, signatures-based detection is heavily disadvantaged in the identification and mitigation of such trust abuses; network administrators cannot as easily use firewalls to block IPs that need access to networks. However, Darktrace DETECT™, and its Self-Learning AI, has proven successful in the identification and mitigation of these compromises. In September 2023, Darktrace observed an incident involving the abuse of such a trusted relationship on the network of a healthcare provider.

Attack Overview

In early September 2023, a Darktrace customer contacted the Darktrace Security Operations Center (SOC) through the Ask the Expert™ (ATE) service requesting assistance with suspicious activity detected on their network. Darktrace had alerted the customer’s security team to an unknown device that had appeared on their network and proceeded to perform a series of unexpected activities, including reconnaissance, lateral movement, and attempted data exfiltration.

Unfortunately for this customer, Darktrace RESPOND™ was not enabled in autonomous response mode at the time of this compromise, meaning any preventative actions suggested by RESPOND had to be applied manually by the customer’s security team after the fact.  Nevertheless, Darktrace’s prompt identification of the suspicious activity and the SOC’s investigation helped to disrupt the intrusion in its early stages, preventing it from developing into a more disruptive compromise.

Initial Access

Darktrace initially observed a new device that appeared within the customers internal network with a Network Address Translated (NAT) IP address that suggested remote access from a former partner organization’s network. Further investigation carried out by the customer revealed that poor credential policies within the partner’s organization had likely been exploited by attackers to gain access to a virtual desktop interface (VDI) machine.

Using the VDI appliance of a trusted associate, the threat actor was then able to gain access to the customer’s environment by utilizing NAT remote access infrastructure. Devices within the customer’s network had previously been utilized for remote access from the partner network when such activity was permitted and expected. Since then, access to this network was thought to have been removed for all parties. However, it became apparent that the remote access functionality remained operational. While the customer also had firewalls within the environment, a misconfiguration at the time of the attack allowed inbound port access to the remote environment resulting in the suspicious device joining the network on August 29, 2023.

Internal Reconnaissance

Shortly after the device joined the network, Darktrace observed it carrying out a string of internal reconnaissance activity. This activity was initiated with internal ICMP address connectivity, followed by internal TCP connection attempts to a range of ports associated with critical services like SMB, RDP, HTTP, RPC, and SSL. The device was also detected attempting to utilize privileged credentials, which were later identified as relating to a generic multi-purpose administrative account. The threat actor proceeded to conduct further internal reconnaissance, including reverse DNS sweeps, while also attempting to use six additional user credentials.

In addition to the widespread internal connectivity, Darktrace observed persistent connection attempts focused on the RDP and SMB protocols. Darktrace also detected additional SMB enumeration during this phase of the attacker’s reconnaissance. This reconnaissance activity largely attempted to access a wide variety of SMB shares, previously unseen by the host to identify available share types and information available for aggregation. As such, the breach host conducted a large spike in SMB writes to the server service (srvsvc) endpoint on a range of internal hosts using the credential: extramedwb. SMB writes to this endpoint traditionally indicate binding attempts.

Beginning on August 31, Darktrace identified a new host associated with the aforementioned NAT IP address. This new host appeared to have taken over as the primary host conducting the reconnaissance and lateral movement on the network taking advantage of the VDI infrastructure. Like the previous host, this one was observed sustaining reconnaissance activity on August 31, featuring elevated SMB enumeration, SMB access failures, RDP connection attempts, and reverse DNS sweeps.  The attackers utilized several credentials to execute their reconnaissance, including generic and possibly default administrative credentials, including “auditor” and “administrator”.

Figure 1: Advanced Search query highlighting anomalous activity from the second observed remote access host over the course of one week surrounding the time of the breach.

Following these initial detections by Darktrace DETECT, Darktrace’s Cyber AI Analyst™ launched an autonomous investigation into the scanning and privileged internal connectivity and linked these seemingly separate events together into one wider internal reconnaissance incident.

Figure 2: Timeline of an AI Analyst investigation carried out between August 29 and August 31, 2023, during which it detected an increased volume of scanning and unusual privileged internal connectivity.

Lateral Movement

Following the reconnaissance activity performed by the new host observed exploiting the remote access infrastructure, Darktrace detected an increase in attempts to move laterally within the customer’s network, particularly via RPC commands and SMB file writes.

Specifically, the threat actor was observed attempting RPC binds to several destination devices, which can be used in the calling of commands and/or the creation of services on destination devices. This activity was highlighted in repeated failed attempts to bind to the ntsvcs named pipe on several destination devices within the network. However, given the large number of connection attempts, Darktrace did also detect a number of successful RPC connections.

Darktrace also detected a spike in uncommon service control (SVCCTL) ExecMethod, Create, and Start service operations from the breach device.

Figure 3: Model breach details noting the affected device performing unsuccessful RPC binds to endpoints not supported on the destination device.

Additional lateral movement activity was performed using the SMB/NTLM protocols. The affected device also conducted a series of anonymous NTLM logins, whereby NTLM authentication attempts occurred without a named client principal, to a range of internal hosts. Such activity is highly indicative of malicious or unauthorized activity on the network. The host also employed the outdated SMB version 1 (SMBv1) protocol during this phase of the kill chain. The use of SMBv1 often represents a compliance issue for most networks due to the high number of exploitable vulnerabilities associated with this version of the protocol.

Lastly, Darktrace identified the internal transfer of uncommon executables, such as ‘TRMtZSqo.exe’, via SMB write. The breach device was observed writing this file to the hidden administrative share (ADMIN$) on a destination server. Darktrace recognized that this activity was highly unusual for the device and may have represented the threat actor transferring a malicious payload to the destination server for further persistence, data aggregation, and/or command and control (C2) operations. Further SMB writes of executable files, and the subsequent delete of these binaries, were observed from the device at this time. For example, the additional executable ‘JAqfhBEB.exe’ was seen being deleted by the breach device. This deletion, paired with the spike in SVCCTL Create and Start operations occurring, suggests the transfer, execution, and removal of persistence and data harvesting binaries within the network.

Figure 4: AI Analyst details highlighting the SMB file writes of the unusual executable from the remote access device during the compromise.

Conclusion

Ultimately, Darktrace was able to successfully identify and alert for suspicious activity being performed by a threat actor who had gained unauthorized access to the customer’s network by abusing one of their trusted relationships.

The identification of scanning, RPC commands and SMB sessions directly assisted the customer in their response to contain and mitigate this intrusion. The investigation carried out by the Darktrace SOC enabled the customer to promptly triage and remediate the attack, mitigating the potential damage and preventing the compromise from escalating further. Had Darktrace RESPOND been enabled in autonomous response mode at the time of the attack, it would have been able to take swift action to inhibit the scanning, share enumerations and file write activity, thereby thwarting the attacker’s network reconnaissance and lateral movement attempts.

By exploiting trusted relationships between organizations, threat actors are often able to bypass traditional signatured-based security methods that have previously been reconfigured to allow and trust connections from and to specific endpoints. Rather than relying on the configurations of specific rules and permitted IP addresses, ports, and devices, Darktrace DETECT’s anomaly-based approach to threat detection meant it was able to identify suspicious network activity at the earliest stage, irrespective of the offending device and whether the domain or relationship was trusted.

Credit to Adam Potter, Cyber Security Analyst, Taylor Breland, Analyst Team Lead, San Francisco.

Darktrace DETECT Model Breach Coverage:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Device / Suspicious SMB Scanning Activity
  • Device / RDP Scan
  • Device / Possible SMB/NTLM Reconnaissance
  • Device / Reverse DNS Sweep
  • Anomalous Connection / SMB Enumeration
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Anonymous NTLM Logins
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Connection / New or Uncommon Service Control
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual Internal EXE File Transfer
  • Device / Multiple Lateral Movement Model Breaches

AI Analyst Incidents:

  • Scanning of Multiple Devices
  • Extensive Unusual RDPConnections
  • SMB Write of Suspicious File
  • Suspicious DCE-RPC Activity

MITRE ATT&CK Mapping

  • Tactic: Initial Access
  • Technique: T1199 - Trusted Relationship
  • Tactic: Discovery
  • Technique:
  • T1018 - Remote System Discovery
  • T1046 - Network Service Discovery
  • T1135 - Network Share Discovery
  • T1083 - File and Directory Discovery
  • Tactic: Lateral Movement
  • Technique:
  • T1570 - Lateral Tool Transfer
  • T1021 - Remote Services
  • T1021.002 - SMB/Windows Admin Shares
  • T1021.003 - Distributed Component Object Model
  • T1550 - Use Alternate Authentication Material

References

1https://attack.mitre.org/techniques/T1199/

2https://www.cloudflare.com/learning/insights-supply-chain-attacks/

3https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2023/m09/companies-reliance-on-it-managed-services-increases-in-2023-sector-valued-at-us-472-billion-globally.html#:~:text=IT%20channel%20partners%20selling%20managed,US%24419%20billion%20in%202022.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Written by
Taylor Breland
Analyst Team Lead, San Francisco

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI