Blog
/
Network
/
December 14, 2021

Log4Shell Vulnerability Detection & Response With Darktrace

Learn how Darktrace's AI detects and responds to Log4Shell attacks. Explore real-world examples and see how Darktrace identified and mitigated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Dec 2021

In this blog, we’ll take a look at the Log4Shell vulnerability and provide real-world examples of how Darktrace detects and responds to attacks attempting to leverage Log4Shell in the wild.

Log4Shell is now the well-known name for CVE-2021-44228 – a severity 10 zero-day exploiting a well-known Java logging utility known as Log4j. Vulnerabilities are discovered daily, and some are more severe than others, but the fact that this open source utility is nested into nearly everything, including the Mars Ingenuity drone, makes this that much more menacing. Details and further updates about Log4Shell are still emerging at the publication date of this blog.

Typically, zero-days with the power to reach this many systems are held close to the chest and only used by nation states for high value targets or operations. This one, however, was first discovered being used against Minecraft gaming servers, shared in chat amongst gamers.

While all steps should be taken to deploy mitigations to the Log4Shell vulnerability, these can take time. As evidenced here, behavioral detection can be used to look for signs of post-exploitation activity such as scanning, coin mining, lateral movement, and other activities.

Darktrace initially detected the Log4Shell vulnerability targeting one of our customers’ Internet-facing servers, as you will see in detail in an actual anonymized threat investigation below. This was highlighted and reported using Cyber AI Analyst, unpacked here by our SOC team. Please take note that this was using pre-existing algorithms without retraining classifiers or adjusting response mechanisms in reaction to Log4Shell cyber-attacks.

How Log4Shell works

The vulnerability works by taking advantage of improper input validation by the Java Naming and Directory Interface (JNDI). A command comes in from an HTTP user-agent, encrypted HTTPS connection, or even a chat room message, and the JNDI sends that to the target system in which it gets executed. Most libraries and applications have checks and protections in place to prevent this from happening, but as seen here, they get missed at times.

Various threat actors have started to leverage the vulnerability in attacks, ranging from indiscriminate crypto-mining campaigns to targeted, more sophisticated attacks.

Real-world example 1: Log4Shell exploited on CVE ID release date

Darktrace saw this first example on December 10, the same day the CVE ID was released. We often see publicly documented vulnerabilities being weaponized within days by threat actors. This attack hit an Internet-facing device in an organization’s demilitarized zone (DMZ). Darktrace had automatically classified the server as an Internet-facing device based on its behavior.

The organization had deployed Darktrace in the on-prem network as one of many coverage areas that include cloud, email and SaaS. In this deployment, Darktrace had good visibility of the DMZ traffic. Antigena was not active in this environment, and Darktrace was in detection-mode only. Despite this fact, the client in question was able to identify and remediate this incident within hours of the initial alert. The attack was automated and had the goal of deploying a crypto-miner known as Kinsing.

In this attack, the attacker made it harder to detect the compromise by encrypting the initial command injection using HTTPS over the more common HTTP seen in the wild. Despite this method being able to bypass traditional rules and signature-based systems Darktrace was able to spot multiple unusual behaviors seconds after the initial connection.

Initial compromise details

Through peer analysis Darktrace had previously learned what this specific DMZ device and its peer group normally do in the environment. During the initial exploitation, Darktrace detected various subtle anomalies that taken together made the attack obvious.

  1. 15:45:32 Inbound HTTPS connection to DMZ server from rare Russian IP — 45.155.205[.]233;
  2. 15:45:38 DMZ server makes new outbound connection to the same rare Russian IP using two new user agents: Java user agent and curl over a port that is unusual to serve HTTP compared to previous behavior;
  3. 15:45:39 DMZ server uses an HTTP connection with another new curl user agent (‘curl/7.47.0’) to the same Russian IP. The URI contains reconnaissance information from the DMZ server.

All this activity was detected not because Darktrace had seen it before, but because it strongly deviated from the regular ‘pattern of life’ for this and similar servers in this specific organization.

This server never reached out to rare IP addresses on the Internet, using user agents it never used before, over protocol and port combinations it never uses. Every point-in-time anomaly itself may have presented slightly unusual behavior – but taken together and analyzed in the context of this particular device and environment, the detections clearly tell a bigger story of an ongoing cyber-attack.

Darktrace detected this activity with various models, for example:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Callback on Web Facing Device

Further tooling and crypto-miner download

Less than 90 minutes after the initial compromise, the infected server started downloading malicious scripts and executables from a rare Ukrainian IP 80.71.158[.]12.

The following payloads were subsequently downloaded from the Ukrainian IP in order:

  • hXXp://80.71.158[.]12//lh.sh
  • hXXp://80.71.158[.]12/Expl[REDACTED].class
  • hXXp://80.71.158[.]12/kinsing
  • hXXp://80.71.158[.]12//libsystem.so
  • hXXp://80.71.158[.]12/Expl[REDACTED].class

Using no threat intelligence or detections based on static indicators of compromise (IoC) such as IPs, domain names or file hashes, Darktrace detected this next step in the attack in real time.

The DMZ server in question never communicated with this Ukrainian IP address in the past over these uncommon ports. It is also highly unusual for this device and its peers to download scripts or executable files from this type of external destination, in this fashion. Shortly after these downloads, the DMZ server started to conduct crypto-mining.

Darktrace detected this activity with various models, for example:

  • Anomalous File / Script from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Internet Facing System with High Priority Alert

Surfacing the Log4Shell incident immediately

In addition to Darktrace detecting each individual step of this attack in real time, Darktrace Cyber AI Analyst also surfaced the overarching security incident, containing a cohesive narrative for the overall attack, as the most high-priority incident within a week’s worth of incidents and alerts in Darktrace. This means that this incident was the most obvious and immediate item highlighted to human security teams as it unfolded. Darktrace’s Cyber AI Analyst found each stage of this incident and asked the very questions you would expect of your human SOC analysts. From the natural language report generated by the Cyber AI Analyst, a summary of each stage of the incident followed by the vital data points human analysts need, is presented in an easy to digest format. Each tab signifies a different part of this incident outlining the actual steps taken during each investigative process.

The result of this is no sifting through low-level alerts, no need to triage point-in-time detections, no putting the detections into a bigger incident context, no need to write a report. All of this was automatically completed by the AI Analyst saving human teams valuable time.

The below incident report was automatically created and could be downloaded as a PDF in various languages.

Figure 1: Darktrace’s Cyber AI Analyst surfaces multiple stages of the attack and explains its investigation process

Real-world example 2: Responding to a different attack using Log4Shell

On December 12, another organization’s Internet-facing server was initially compromised via Log4Shell. While the details of the compromise are different – other IoCs are involved – Darktrace detected and surfaced the attack similarly to the first example.

Interestingly, this organization had Darktrace Antigena in autonomous mode on their server, meaning the AI can take autonomous actions to respond to ongoing cyber-attacks. These responses can be delivered via a variety of mechanisms, for instance, API interactions with firewalls, other security tools, or native responses issued by Darktrace.

In this attack the rare external IP 164.52.212[.]196 was used for command and control (C2) communication and malware delivery, using HTTP over port 88, which was highly unusual for this device, peer group and organization.

Antigena reacted in real time in this organization, based on the specific context of the attack, without any human in the loop. Antigena interacted with the organization’s firewall in this case to block any connections to or from the malicious IP address – in this case 164.52.212[.]196 – over port 88 for 2 hours with the option of escalating the block and duration if the attack appears to persist. This is seen in the illustration below:

Figure 2: Antigena’s response

Here comes the trick: thanks to Self-Learning AI, Darktrace knows exactly what the Internet-facing server usually does and does not do, down to each individual data point. Based on the various anomalies, Darktrace is certain that this represents a major cyber-attack.

Antigena now steps in and enforces the regular pattern of life for this server in the DMZ. This means the server can continue doing whatever it normally does – but all the highly anomalous actions are interrupted as they occur in real time, such as speaking to a rare external IP over port 88 serving HTTP to download executables.

Of course the human can change or lift the block at any given time. Antigena can also be configured to be in human confirmation mode, having the human in the loop at certain times during the day (e.g. office hours) or at all times, depending on an organization’s needs and requirements.

Conclusion

This blog illustrates further aspects of cyber-attacks leveraging the Log4Shell vulnerability. It also demonstrates how Darktrace detects and responds to zero-day attacks if Darktrace has visibility of the attacked entities.

While Log4Shell is dominating the IT and security news, similar vulnerabilities have surfaced in the past and will appear in the future. We’ve spoken about our approach to detecting and responding to similar vulnerabilities and surrounding cyber-attacks before, for instance:

As always, companies should aim for a defense-in-depth strategy combining preventative security controls with detection and response mechanisms, as well as strong patch management.

Thanks to Brianna Leddy (Darktrace’s Director of Analysis) for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

Email

/

December 3, 2025

Darktrace Named as a Leader in 2025 Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace is proud to be named as a Leader in the Gartner® Magic Quadrant™ for Email Security Platforms (ESP). We believe this recognition reflects what our customers already know: our product is exceptional – and so is the way we deliver it.

In July 2025, Darktrace was named a Customers’ Choice in the Gartner® Peer Insights™ Voice of the Customer for Email Security, a distinction given to vendors who have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience). To us, both achievements are testament to the customer-first approach that has fueled our rapid growth. We feel this new distinction from Gartner validates the innovation, efficacy, and customer-centric delivery that set Darktrace apart.

A Gartner Magic Quadrant is a culmination of research in a specific market, giving you a wide-angle view of the relative positions of the market’s competitors. CIOs and CISOs can use this research to make informed decisions about which email security platform can best accomplish their goals. We encourage our customers to read the full report to get the complete picture.

This acknowledgement follows the recent recognition of Darktrace / NETWORK, also designated a Leader in the Gartner Magic Quadrant for Network Detection & Response and named the only Customers’ Choice in its category.

Leaders are recognized for strong market adoption, financial stability, and established integrations with major collaboration platforms.

Why do we believe Darktrace is leading in the email security market?

Our relentless innovation which drives proven results  

At Darktrace we continue to push the frontier of email security, with industry-first AI-native detection and response capabilities that go beyond traditional SEG approaches. How do we do it?

  • With a proven approach that gets results. Darktrace’s unique business-centric anomaly detection catches advanced phishing, supply chain compromises, and BEC attacks – detecting them on average 13 days earlier than attack-centric solutions. That’s why 75% of our customers have removed their SEG and now rely on their native email security provider combined with Darktrace.
  • By offering comprehensive protection beyond the inbox. Darktrace / EMAIL goes further than traditional inbound filtering, delivering account and messaging protection, DLP, and DMARC capabilities, ensuring best-in-class security across inbound, outbound, and domain protection scenarios.  
  • Continuous innovation. We are ranked second highest in the Gartner Critical Capabilities research for core email security function, likely thanks to our product strategy and rapid pace of innovation. We’ve release major capabilities twice a year for nearly five years, including advanced AI models and expanded coverage for collaboration platforms.

We deliver exceptional customer experiences worldwide

Darktrace’s leadership isn’t just about excelling in technology, it’s about delivering an outstanding experience that customers value. Let’s dig into what makes our customers tick.

  • Proven loyalty from our base. Recognition from Gartner Peer Insights as a Customers’ Choice, combined with a 4.8-star rating (based on 340 reviews as of November 2025), demonstrates for us the trust of thousands of organizations worldwide, not just the analysts.  
  • Customer-first support. Darktrace goes beyond ticket-only models with dedicated account teams and award-winning service, backed by significant headcount growth in technical support and analytics roles over the past year.
  • Local expertise. With offices spanning continents, Darktrace is able to provide regional language support and tailored engagement from teams on the ground, ensuring personalized service and a human-first experience.

Darktrace enhances security stacks with a partner-first architecture

There are plenty of tools out there than encourage a siloed approach. Darktrace / EMAIL plays well with others, enhancing your native security provider and allowing you to slim down your stack. It’s designed to set you up for future growth, with:

  • A best-in-breed platform approach. Natively built on Self-Learning AI, Darktrace / EMAIL delivers deep integration with our / NETWORK, / IDENTITY, and / CLOUD products as part of a unified platforms – that enables and enhances comprehensive enterprise-wise security.
  • Optimized workflows. Darktrace integrates tightly with an extended ecosystem of security tools – including a strategic partnership with Microsoft enabling unified threat response and quarantine capabilities – bringing constant innovation to all of your SOC workflows.  
  • A channel-first strategy. Darktrace is making significant investments in partner-driven architectures, enabling integrated ecosystems that deliver maximum value and future-ready security for our customers.

Analyst recognized. Customer approved.  

Darktrace / EMAIL is not just another inbound email security tool; it’s an advanced email security platform trusted by thousands of users to protect them against advanced phishing, messaging, and account-level attacks.  

As a Leader, we believe we owe our positioning to our customers and partners for supporting our growth. In the upcoming years we will continue to innovate to serve the organizations who depend on Darktrace for threat protection.  

To learn more about Darktrace’s position as a Leader, view a complimentary copy of the Magic Quadrant report, register for the Darktrace Innovation Webinar on 9 December, 2025, or simply request a demo.

Gartner, Gartner® Magic Quadrant™ for Email Security Platforms, Max Taggett, Nikul Patel, 3 December 2025

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Magic Quadrant is a registered trademark of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

This graphic was published by Gartner, Inc. as part of a larger research document and should be evaluated in the context of the entire document. The Gartner document is available upon request from Darktrace.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI