Blog
/
/
December 21, 2020

How AI Stopped a WastedLocker Ransomware Intrusion & Fast

Stop WastedLocker ransomware in its tracks with Darktrace AI technology. Learn about how AI detected a recent attack using 'Living off the Land' techniques.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Dec 2020

Since first being discovered in May 2020, WastedLocker has made quite a name for itself, quickly becoming an issue for businesses and cyber security firms around the world. WastedLocker is known for its sophisticated methods of obfuscation and steep ransom demands.

Its use of ‘Living off the Land’ techniques makes a WastedLocker attack extremely difficult for legacy security tools to detect. An ever-decreasing dwell time – the time between initial intrusion and final execution – means human responders alone struggle to contain the ransomware variant before damage is done.

This blog examines the anatomy of a WastedLocker intrusion that targeted a US agricultural organization in December. Darktrace’s AI detected and investigated the incident in real time, and we can see how Darktrace RESPOND would have autonomously taken action to stop the attack before encryption had begun.

As ransomware dwell time shrinks to hours rather than days, security teams are increasingly relying on artificial intelligence to stop threats from escalating at the earliest signs of compromise – containing attacks even when they strike at night or on the weekend.

How the WastedLocker attack unfolded

Figure 1: A timeline of the attack

Initial intrusion

The initial infection appears to have taken place when an employee was deceived into downloading a fake browser update. Darktrace AI was monitoring the behavior of around 5,000 devices at the organization, continuously adapting its understanding of the evolving ‘pattern of life’. It detected the first signs of a threat when a virtual desktop device started making HTTP and HTTPS connections to external destinations that were deemed unusual for the organization. The graph below depicts how the patient zero device exhibited a spike in internal connections around December 4.

Figure 2: The patient zero device exhibiting a spike in internal connections, with orange dots indicating model breaches of varying severity

Reconnaissance

Attempted reconnaissance began just 11 minutes after the initial intrusion. Again, Darktrace immediately picked up on the activity, detecting unusual ICMP ping scans and targeted address scans on ports 135, 139 and 445; presumably as the attacker looked for potential further Windows targets. The below demonstrates the scanning detections based on the unusual number of new failed connections.

Figure 3: Darktrace detecting an unusual number of failed connections

Lateral movement

The attacker used an existing administrative credential to authenticate against a Domain Controller, initiating new service control over SMB. Darktrace picked this up immediately, identifying it as unusual behavior.

Figure 4: Darktrace identifying the DCE-RPC requests
Figure 5: Darktrace surfacing the SMB writes

Several hours later – and in the early hours of the morning – the attacker used a temporary admin account ‘tempadmin’ to move to another Domain Controller over SMB. Darktrace instantly detected this as it was highly unusual to use a temporary admin account to connect from a virtual desktop to a Domain Controller.

Figure 6: Further anomalous connections detected the following day

Lock and load: WastedLocker prepares to strike

During the beaconing activity, the attacker also conducted internal reconnaissance and managed to establish successful administrative and remote connections to other internal devices by using tools already present. Soon after, a transfer of suspicious .csproj files was detected by Darktrace, and at least four other devices began exhibiting similar command and control (C2) communications.

However, with Darktrace’s real-time detections – and Cyber AI Analyst investigating and reporting on the incident in a number of minutes, the security team were able to contain the attack, taking the infected devices offline.

Automated investigations with Cyber AI Analyst

Darktrace’s Cyber AI Analyst launched an automatic investigation around every anomaly detection, forming hypotheses, asking questions about its own findings, and forming accurate answers at machine speed. It then generated high-level, intuitive incident summaries for the security team. Over the 48 hour period, the AI Analyst surfaced just six security incidents in total, with three of these directly relating to the WastedLocker intrusion.

Figure 7: The Cyber AI Analyst threat tray

The snapshot below shows a VMWare device (patient zero) making repeated external connections to rare destinations, scanning the network and using new admin credentials.

Figure 8: Cyber AI Analyst investigates

Darktrace RESPOND: AI that responds when the security team cannot

Darktrace RESPOND – the world’s first and only Autonomous Response technology – was configured in passive mode, meaning it did not actively interfere with the attack, but if we dive back into the Threat Visualizer we can see that Antigena in fully autonomous mode would have responded to the attack at this early stage, buying the security team valuable time.

In this case, after the initial unusual SSL C2 detection (based on a combination of destination rarity, JA3 unusualness and frequency analysis), RESPOND (formerly known as 'Antigena', as shown in the screenshots below) suggested instantly blocking the C2 traffic on port 443 and parallel internal scanning on port 135.

Figure 9: The Threat Visualizer reveals the action Antigena would have taken

When beaconing was later observed to bywce.payment.refinedwebs[.]com, this time over HTTP to /updateSoftwareVersion, RESPOND escalated its response by blocking the further C2 channels.

Figure 10: Antigena escalates its response

The vast majority of response tools rely on hard-coded, pre-defined rules, formulated as ‘If X, do Y’. This can lead to false positives that unnecessarily take devices offline and hamper productivity. Darktrace RESPOND's actions are proportionate, bespoke to the organization, and not created in advance. Darktrace Antigena autonomously chose what to block and the severity of the blocks based on the context of the intrusion, without a human pre-eminently hard-coding any commands or set responses.

Every response over the 48 hours was related to the incident – RESPOND did not try to take action on anything else during the intrusion period. It simply would have actioned a surgical response to contain the threat, while allowing the rest of the business to carry on as usual. There were a total of 59 actions throughout the incident time period – excluding the ‘Watched Domain Block’ actions shown below – which are used during incident response to proactively shut down C2 communication.

Figure 11: All Antigena action attempts during the intrusion period across the whole organization

RESPOND would have delivered those blocks via whatever integration is most suitable for the organization – whether that be Firewall integrations, NACL integrations or other native integrations. The technology would have blocked the malicious activity on the relevant ports and protocols for several hours – surgically interrupting the threat actors’ intrusion activity, thus preventing further escalation and giving the security team air cover.

Stopping WastedLocker ransomware before encryption ensues

This attack used many notable Tools, Techniques and Procedures (TTPs) to bypass signature-based tools. It took advantage of ‘Living off the Land’ techniques, including Windows Management Instrumentation (WMI), Powershell, and default admin credential use. Only one of the involved C2 domains had a single hit on Open Source Intelligence Lists (OSINT); the others were unknown at the time. The C2 was also encrypted with legitimate Thawte SSL Certificates.

For these reasons, it is plausible that without Darktrace in place, the ransomware would have been successful in encrypting files, preventing business operations at a critical time and possibly inflicting huge financial and reputational losses to the organization in question.

Darktrace’s AI detects and stops ransomware in its tracks without relying on threat intelligence. Ransomware has thrived this year, with attackers constantly coming up with new attack TTPs. However, the above threat find demonstrates that even targeted, sophisticated strains of ransomware can be stopped with AI technology.

Thanks to Darktrace analyst Signe Zaharka for her insights on the above threat find.

Learn more about Autonomous Response

Darktrace model detections:

  • Compliance / High Priority Compliance Model Breach
  • Compliance / Weak Active Directory Ticket Encryption
  • Anomalous Connection / Cisco Umbrella Block Page
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compliance / Default Credential Usage
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Anomalous Server Activity / Rare External from Server
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New or Uncommon WMI Activity
  • Compromise / Watched Domain
  • Antigena / Network / External Threat / Antigena Watched Domain Block
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Large Number of Model Breaches
  • Compromise / Beaconing Activity To External Rare
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Anomalous Connection / New or Uncommon Service Control
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Compromise / SSL or HTTP Beacon
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Compromise / Sustained SSL or HTTP Increase
  • Unusual Activity / Unusual Internal Connections
  • Device / ICMP Address Scan

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

September 25, 2025

Announcing Unified Real-Time CDR and Automated Investigations to Transform Cloud Security Operations

Default blog imageDefault blog image

Fragmented Tools are Failing SOC Teams in the Cloud Era

The cloud has transformed how businesses operate, reshaping everything from infrastructure to application delivery. But cloud security has not kept pace. Most tools still rely on traditional models of logging, policy enforcement, and posture management; approaches that provide surface-level visibility but lack the depth to detect or investigate active attacks.

Meanwhile, attackers are exploiting vulnerabilities, delivering cloud-native exploits, and moving laterally in ways that posture management alone cannot catch fast enough. Critical evidence is often missed, and alerts lack the forensic depth SOC analysts need to separate noise from true risk. As a result, organizations remain exposed: research shows that nearly nine in ten organizations have suffered a critical cloud breach despite investing in existing security tools [1].

SOC teams are left buried in alerts without actionable context, while ephemeral workloads like containers and serverless functions vanish before evidence can be preserved. Point tools for logging or forensics only add complexity, with 82% of organizations using multiple platforms to investigate cloud incidents [2].

The result is a broken security model: posture tools surface risks but don’t connect them to active attacker behaviors, while investigation tools are too slow and fragmented to provide timely clarity. Security teams are left reactive, juggling multiple point solutions and still missing critical signals. What’s needed is a unified approach that combines real-time detection and response for active threats with automated investigation and cloud posture management in a single workflow.

Just as security teams once had to evolve beyond basic firewalls and antivirus into network and endpoint detection, response, and forensics, cloud security now requires its own next era: one that unifies detection, response, and investigation at the speed and scale of the cloud.

A Powerful Combination: Real-Time CDR + Automated Cloud Forensics

Darktrace / CLOUD now uniquely unites detection, investigation, and response into one workflow, powered by Self-Learning AI. This means every alert, from any tool in your stack, can instantly become actionable evidence and a complete investigation in minutes.

With this release, Darktrace / CLOUD delivers a more holistic approach to cloud defense, uniting real-time detection, response, and investigation with proactive risk reduction. The result is a single solution that helps security teams stay ahead of attackers while reducing complexity and blind spots.

  • Automated Cloud Forensic Investigations: Instantly capture and analyze volatile evidence from cloud assets, reducing investigation times from days to minutes and eliminating blind spots
  • Enhanced Cloud-Native Threat Detection: Detect advanced attacker behaviors such as lateral movement, privilege escalation, and command-and-control in real time
  • Enhanced Live Cloud Topology Mapping: Gain continuous insight into cloud environments, including ephemeral workloads, with live topology views that simplify investigations and expose anomalous activity
  • Agentless Scanning for Proactive Risk Reduction: Continuously monitor for misconfigurations, vulnerabilities, and risky exposures to reduce attack surface and stop threats before they escalate.

Automated Cloud Forensic Investigations

Darktrace / CLOUD now includes capabilities introduced with Darktrace / Forensic Acquisition & Investigation, triggering automated forensic acquisition the moment a threat is detected. This ensures ephemeral evidence, from disks and memory to containers and serverless workloads can be preserved instantly and analyzed in minutes, not days. The integration unites detection, response, and forensic investigation in a way that eliminates blind spots and reduces manual effort.

Figure 1: Easily view Forensic Investigation of a cloud resource within the Darktrace / CLOUD architecture map

Enhanced Cloud-Native Threat Detection

Darktrace / CLOUD strengthens its real-time behavioral detection to expose early attacker behaviors that logs alone cannot reveal. Enhanced cloud-native detection capabilities include:

• Reconnaissance & Discovery – Detects enumeration and probing activity post-compromise.

• Privilege Escalation via Role Assumption – Identifies suspicious attempts to gain elevated access.

• Malicious Compute Resource Usage – Flags threats such as crypto mining or spam operations.

These enhancements ensure active attacks are detected earlier, before adversaries can escalate or move laterally through cloud environments.

Figure 2: Cyber AI Analyst summary of anomalous behavior for privilege escalation and establishing persistence.

Enhanced Live Cloud Topology Mapping

New enhancements to live topology provide real-time mapping of cloud environments, attacker movement, and anomalous behavior. This dynamic visibility helps SOC teams quickly understand complex environments, trace attack paths, and prioritize response. By integrating with Darktrace / Proactive Exposure Management (PEM), these insights extend beyond the cloud, offering a unified view of risks across networks, endpoints, SaaS, and identity — giving teams the context needed to act with confidence.

Figure 3: Enhanced live topology maps unify visibility across architectures, identities, network connections and more.

Agentless Scanning for Proactive Risk Reduction

Darktrace / CLOUD now introduces agentless scanning to uncover malware and vulnerabilities in cloud assets without impacting performance. This lightweight, non-disruptive approach provides deep visibility into cloud workloads and surfaces risks before attackers can exploit them. By continuously monitoring for misconfigurations and exposures, the solution strengthens posture management and reduces attack surface across hybrid and multi-cloud environments.

Figure 4: Agentless scanning of cloud assets reveals vulnerabilities, which are prioritized by severity.

Together, these capabilities move cloud security operations from reactive to proactive, empowering security teams to detect novel threats in real time, reduce exposures before they are exploited, and accelerate investigations with forensic depth. The result is faster triage, shorter MTTR, and reduced business risk — all delivered in a single, AI-native solution built for hybrid and multi-cloud environments.

Accelerating the Evolution of Cloud Security

Cloud security has long been fragmented, forcing teams to stitch together posture tools, log-based monitoring, and external forensics to get even partial coverage. With this release, Darktrace / CLOUD delivers a holistic, unified approach that covers every stage of the cloud lifecycle, from proactive posture management and risk identification to real-time detection, to automated investigation and response.

By bringing these capabilities together in a single AI-native solution, Darktrace is advancing cloud security beyond incremental change and setting a new standard for how organizations protect their hybrid and multi-cloud environments.

With Darktrace / CLOUD, security teams finally gain end-to-end visibility, response, and investigation at the speed of the cloud, transforming cloud defense from fragmented and reactive to unified and proactive.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

/

September 25, 2025

Introducing the Industry’s First Truly Automated Cloud Forensics Solution

Default blog imageDefault blog image

Why Cloud Investigations Fail Today

Cloud investigations have become one of the hardest problems in modern cybersecurity. Traditional DFIR tools were built for static, on-prem environments, rather than dynamic and highly scalable cloud environments, containing ephemeral workloads that disappear in minutes. SOC analysts are flooded with cloud security alerts with one-third lacking actionable data to confirm or dismiss a threat[1], while DFIR teams waste 3-5 days requesting access and performing manual collection, or relying on external responders.

These delays leave organizations vulnerable. Research shows that nearly 90% of organizations suffer some level of damage before they can fully investigate and contain a cloud incident [2]. The result is a broken model: alerts are closed without a complete understanding of the threat due to a lack of visibility and control, investigations drag on, and attackers retain the upper hand.

For SOC teams, the challenge is scale and clarity. Analysts are inundated with alerts but lack the forensic depth to quickly distinguish real threats from noise. Manual triage wastes valuable time, creates alert fatigue, and often forces teams to escalate or dismiss incidents without confidence — leaving adversaries with room to maneuver.

For DFIR teams, the challenge is depth and speed. Traditional forensics tools were built for static, on-premises environments and cannot keep pace with ephemeral workloads that vanish in minutes. Investigators are left chasing snapshots, requesting access from cloud teams, or depending on external responders, leading to blind spots and delayed response.

That’s why we built Darktrace / Forensic Acquisition & Investigation, the first automated forensic solution designed specifically for the speed, scale, and complexities of the cloud. It addresses both sets of challenges by combining automated forensic evidence capture, attacker timeline reconstruction, and cross-cloud scale. The solution empowers SOC analysts with instant clarity and DFIR teams with forensic depth, all in minutes, not days. By leveraging the very nature of the cloud, Darktrace makes these advanced capabilities accessible to security teams of all sizes, regardless of expertise or resources.

Introducing Automated Forensics at the Speed and Scale of Cloud

Darktrace / Forensic Acquisition & Investigation transforms cloud investigations by capturing, processing, and analyzing forensic evidence of cloud workloads, instantly, even from time-restricted ephemeral resources. Triggered by a detection from any cloud security tool, the entire process is automated, providing accurate root cause analysis and deep insights into attacker behavior in minutes rather than days or weeks. SOC and DFIR teams no longer have to rely on manual processes, snapshots, or external responders, they can now leverage the scale and elasticity of the cloud to accelerate triage and investigations.

Seamless Integration with Existing Detection Tools

Darktrace / Forensic Acquisition & Investigation does not require customers to replace their detection stack. Instead, it integrates with cloud-native providers, XDR platforms, and SIEM/SOAR tools, automatically initiating forensic capture whenever an alert is raised. This means teams can continue leveraging their existing investments while gaining the forensic depth required to validate alerts, confirm root cause, and accelerate response.

Most importantly, the solution is natively integrated with Darktrace / CLOUD, turning real-time detections of novel attacker behaviors into full forensic investigations instantly. When Darktrace / CLOUD identifies suspicious activity such as lateral movement, privilege escalation, or abnormal usage of compute resources, Darktrace / Forensic Acquisition & Investigation automatically preserves the underlying forensic evidence before it disappears. This seamless workflow unites detection, response, and investigation in a way that eliminates gaps, accelerates triage, and gives teams confidence that every critical cloud alert can be investigated to completion.

Figure 1: Integration with Darktrace / CLOUD – this example is showing the ability to pivot into the forensic investigation associated with a compromised cloud asset

Automated Evidence Collection Across Hybrid and Multi-Cloud

The solution provides automated forensic acquisition across AWS, Microsoft Azure, GCP, and on-prem environments. It supports both full volume capture, creating a bit-by-bit copy of an entire storage device for the most comprehensive preservation of evidence, and triage collection, which prioritizes speed by gathering only the most essential forensic artifacts such as process data, logs, network connections, and open file contents. This flexibility allows teams to strike the right balance between speed and depth depending on the investigation at hand.

Figure 2: Ability to acquire forensic data from Cloud, SaaS and on-prem environments

Automated Investigations, Root Cause Analysis and Attacker Timelines

Once evidence is collected, Darktrace applies automation to reconstruct attacker activity into a unified timeline. This includes correlating commands, files, lateral movement, and network activity into a single investigative view enriched with custom threat intelligence such as IOCs. Detailed investigation reporting including an investigation summary, an overview of the attacker timeline, and key events. Analysts can pivot into detailed views such as the filesystem view, traversing directories or inspecting file content, or filter and search using faceted options to quickly narrow the scope of an investigation.

Figure 3: Automated Investigation view surfacing the most significant attacker activity, which is contextualized with Alarm information

Forensics for Containers and Ephemeral Assets

Investigating containers and serverless workloads has historically been one of the hardest challenges for DFIR teams, as these assets often disappear before evidence can be preserved. Darktrace / Forensic Acquisition & Investigation captures forensic evidence across managed Kubernetes cloud services, even from distroless or no-shell containers, AWS ECS and other environments, ensuring that ephemeral activity is no longer a blind spot. For hybrid organizations, this extends to on-premises Kubernetes and OpenShift deployments, bringing consistency across environments.

Figure 4: Container investigations – this example is showing the ability to capture containers from managed Kubernetes cloud services

SaaS Log Collection for Modern Investigations

Beyond infrastructure-level data, the solution collects logs from SaaS providers such as Microsoft 365, Entra ID, and Google Workspace. This enables investigations into common attack types like business email compromise (BEC), account takeover (ATO), and insider threats — giving teams visibility into both infrastructure-level and SaaS-driven compromise from a single platform.

Figure 5: Ability to import logs from SaaS providers including Microsoft 365, Entra ID, and Google Workspace

Proactive Vulnerability and Malware Discovery

Finally, the solution surfaces risk proactively with vulnerability and malware discovery for Linux-based cloud resources. Vulnerabilities are presented in a searchable table and correlated with the attacker timeline, enabling teams to quickly understand not just which packages are exposed, but whether they have been targeted or exploited in the context of an incident.

Figure 6: Vulnerability data with pivot points into the attacker timeline

Cloud-Native Scale and Performance

Darktrace / Forensic Acquisition & Investigation uses a cloud-native parallel processing architecture that spins up compute resources on demand, ensuring that investigations run at scale without bottlenecks. Detailed reporting and summaries are automatically generated, giving teams a clear record of the investigation process and supporting compliance, litigation readiness, and executive reporting needs.

Scalable and Flexible Deployment Options

Every organization has different requirements for speed, control, and integration. Darktrace / Forensic Acquisition & Investigation is designed to meet those needs with two flexible deployment models.

  • Self-Hosted Virtual Appliance delivers deep integration and control across hybrid environments, preserving forensic data for compliance and litigation while scaling to the largest enterprise investigations.
  • SaaS-Delivered Deployment provides fast time-to-value out of the box, enabling automated forensic response without requiring deep cloud expertise or heavy setup.

Both models are built to scale across regions and accounts, ensuring organizations of any size can achieve rapid value and adapt the solution to their unique operational and compliance needs. This flexibility makes advanced cloud forensics accessible to every security team — whether they are optimizing for speed, integration depth, or regulatory alignment

Delivering Advanced Cloud Forensics for Every Team

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

Whether deployed as a SaaS-delivered service for fast time-to-value or as a self-hosted appliance for deep integration, Darktrace / Forensic Acquisition & Investigation provides the features that matter most: automated evidence capture, cross-cloud investigations, forensic depth for ephemeral assets, and root cause clarity without manual effort.

With Darktrace / Forensic Acquisition & Investigation, what once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Additional Resources

Continue reading
About the author
Paul Bottomley
Director of Product Management | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI