Blog
/
Network
/
January 31, 2024

How Darktrace Defeated SmokeLoader Malware

Read how Darktrace's AI identified and neutralized SmokeLoader malware. Gain insights into their proactive approach to cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jan 2024

What is Loader Malware?

Loader malware is a type of malicious software designed primarily to infiltrate a system and then download and execute additional malicious payloads.

In recent years, loader malware has emerged as a significant threat for organizations worldwide. This trend is expected to continue given the widespread availability of many loader strains within the Malware-as-a-Service (MaaS) marketplace. The MaaS marketplace contains a wide variety of innovative strains which are both affordable, with toolkits ranging from USD 400 to USD 1,650 [1], and continuously improving, aiming to avoid traditional detection mechanisms.

SmokeLoader is one such example of a MaaS strain that has been observed in the wild since 2011 and continues to pose a significant threat to organizations and their security teams.

How does SmokeLoader Malware work?

SmokeLoader’s ability to drop an array of different malware strains onto infected systems, from backdoors, ransomware, cryptominers, password stealers, point-of-sale malware and banking trojans, means its a highly versatile loader that has remained consistently popular among threat actors.

In addition to its versatility, it also exhibits advanced evasion strategies that make it difficult for traditional security solutions to detect and remove, and it is easily distributed via methods like spam emails or malicious file downloads.

Between July and August 2023, Darktrace observed an increasing trend in SmokeLoader compromises across its customer base. The anomaly-based threat detection capabilities of Darktrace, coupled with the autonomous response technology, identified and contained the SmokeLoader infections in their initial stages, preventing attackers from causing further disruption by deploying other malicious software or ransomware.

SmokeLoader Malware Attack Details

PROPagate Injection Technique

SmokeLoader utilizes the PROPagate code injection technique, a less common method that inserts malicious code into existing processes in order to appear legitimate and bypass traditional signature-based security measures [2] [3]. In the case of SmokeLoader, this technique exploits the Windows SetWindowsSubclass function, which is typically used to add or change the behavior of Windows Operation System. By manipulating this function, SmokeLoader can inject its code into other running processes, such as the Internet Explorer. This not only helps to disguise  the malware's activity but also allows attackers to leverage the permissions and capabilities of the infected process.

Obfuscation Methods

SmokeLoader is known to employ several obfuscation techniques to evade the detection and analysis of security teams. The techniques include scrambling portable executable files, encrypting its malicious code, obfuscating API functions and packing, and are intended to make the malware’s code appear harmless or unremarkable to antivirus software. This allows attackers to slip past defenses and execute their malicious activities while remaining undetected.

Infection Vector and Communication

SmokeLoader typically spreads via phishing emails that employ social engineering tactics to convince users to unknowingly download malicious payloads and execute the malware. Once installed on target networks, SmokeLoader acts as a backdoor, allowing attackers to control infected systems and download further malicious payloads from command-and-control (C2) servers. SmokeLoader uses fast flux, a DNS technique utilized by botets whereby IP addresses associated with C2 domains are rapidly changed, making it difficult to trace the source of the attack. This technique also boosts the resilience of attack, as taking down one or two malicious IP addresses will not significantly impact the botnet's operation.

Continuous Evolution

As with many MaaS strains, SmokeLoader is continuously evolving, with its developers regularly adding new features and techniques to increase its effectiveness and evasiveness. This includes new obfuscation methods, injection techniques, and communication protocols. This constant evolution makes SmokeLoader a significant threat and underscores the importance of advanced threat detection and response capabilities solution.

Darktrace’s Coverage of SmokeLoader Attack

Between July and August 2023, Darktrace detected one particular SmokeLoader infection at multiple stages of its kill chain on a customer network. This detection was made possible by Darktrace DETECT’s anomaly-based approach and Self-Learning AI that allows it to identify subtle deviations in device behavior.

One of the key components of this process is the classification of endpoint rarity and determining whether an endpoint is new or unusual for any given network. This classification is applied to various aspects of observed endpoints, such as domains, IP addresses, or hostnames within the network. It thereby plays a vital role in identifying SmokeLoader activity, such as the initial infection vector or C2 communication, which typically involve a device contacting a malicious endpoint associated with SmokeLoader.

The First Signs of Infection SmokeLoader Infection

Beginning in July 2023, Darktrace observed a surge in suspicious activities that were assessed with moderate to high confidence to be associated with SmokeLoader malware.

For example on July 30, a device was observed making a successful HTTPS request to humman[.]art, a domain that had never been seen on the network, and therefore classified as 100% rare by DETECT. During this connection, the device in question received a total of 6.0 KiB of data from the unusual endpoint. Open-source intelligence (OSINT) sources reported with high confidence that this domain was associated with the SmokeLoader C2 botnet.

The device was then detected making an HTTP request to another 100% rare external IP, namely 85.208.139[.]35, using a new user agent. This request contained the URI ‘/DefenUpdate.exe’, suggesting a possible download of an executable (.exe) file. This was corroborated by the total amount of data received in this connection, 4.3 MB. Both the file name and its size suggest that the offending device may have downloaded additional malicious tooling from the SmokeLoader C2 endpoint, such as a trojan or information stealer, as reported on OSINT platforms [4].

Figure 1: Device event log showing the moment when a device made its first connection to a SmokeLoader associated domain, and the use of a new user agent. A few seconds later, the DETECT model “Anomalous Connection / New User Agent to IP Without Hostname” breached.

The observed new user agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko” was identified as suspicious by Darktrace leading to the “Anomalous Connection / New User Agent to IP Without Hostname” DETECT model breach.

As this specific user agent was associated with the Internet Explorer browser running on Windows 10, it may not have appeared suspicious to traditional security tools. However, Darktrace’s anomaly-based detection allows it to identify and mitigate emerging threats, even those that utilize sophisticated evasion techniques.

This is particularly noteworthy in this case because, as discussed earlier, SmokeLoader is known to inject its malicious code into legitimate processes, like Internet Explorer.

Figure 2: Darktrace detecting the affected device leveraging a new user agent and establishing an anomalous HTTP connection with an external IP, which was 100% rare to the network.

C2 Communication

Darktrace continued to observe the device making repeated connections to the humman[.]art endpoint. Over the next few days. On August 7, the device was observed making unusual POST requests to the endpoint using port 80, breaching the ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ DETECT model. These observed POST requests were observed over a period of around 10 days and consisted of a pattern of 8 requests, each with a ten-minute interval.

Figure 3: Model Breach Event Log highlighting the Darktrace DETECT model breach ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’.

Upon investigating the details of this activity identified by Darktrace DETECT, a particular pattern was observed in these requests: they used the same user-agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko”, which was previously detected in the initial breach.

Additionally, they the requests had a constantly changing  eferrer header, possibly using randomly generated domain names for each request. Further examination of the packet capture (PCAP) from these requests revealed that the payload in these POST requests contained an RC4 encrypted string, strongly indicating SmokeLoader C2 activity.

Figure4: Advanced Search results display an unusual pattern in the requests made by the device to the hostname humman[.]art. This pattern shows a constant change in the referrer header for each request, indicating anomalous behavior.
Figure 5: The PCAP shows the payload seen in these POST requests contained an RC4 encrypted string strongly indicating SmokeLoader C2 activity.  

Unfortunately in this case, Darktrace RESPOND was not active on the network meaning that the attack was able to progress through its kill chain. Despite this, the timely alerts and detailed incident insights provided by Darktrace DETECT allowed the customer’s security team to begin their remediation process, implementing blocks on their firewall, thus preventing the SmokeLoader malware from continuing its communication with C2 infrastructure.

Darktrace RESPOND Halting Potential Threats from the Initial Stages of Detection

With Darktrace RESPOND, organizations can move beyond threat detection to proactive defense against emerging threats. RESPOND is designed to halt threats as soon as they are identified by DETECT, preventing them from escalating into full-blown compromises. This is achieved through advanced machine learning and Self-Learning AI that is able to understand  the normal ‘pattern of life’ of customer networks, allowing for swift and accurate threat detection and response.

One pertinent example was seen on July 6, when Darktrace detected a separate SmokeLoader case on a customer network with RESPOND enabled in autonomous response mode. Darktrace DETECT initially identified a string of anomalous activity associated with the download of suspicious executable files, triggering the ‘Anomalous File / Multiple EXE from Rare External Locations’ model to breach.

The device was observed downloading an executable file (‘6523.exe’ and ‘/g.exe’) via HTTP over port 80. These downloads originated from endpoints that had never been seen within the customer’s environment, namely ‘hugersi[.]com’ and ‘45.66.230[.]164’, both of which had strongly been linked to SmokeLoader by OSINT sources, likely indicating the initial infection stage of the attack [5].

Figure 6: This figure illustrates Darktrace DETECT observing a device downloading multiple .exe files from rare endpoints and the associated model breach, ‘Anomalous File / Multiple EXE from Rare External Locations’.

Around the same time, Darktrace also observed the same device downloading an unusual file with a numeric file name. Threat actors often employ this tactic in order to avoid using file name patterns that could easily be recognized and blocked by traditional security measures; by frequently changing file names, malicious executables are more likely to remain undetected.

Figure 7: Graph showing the unusually high number of executable files downloaded by the device during the initial infection stage of the attack. The orange and red circles represent the number of model breaches that the device made during the observed activity related to SmokeLoader infection.
Figure 8: This figure illustrates the moment when Darktrace DETECT identified a suspicious download with a numeric file name.

With Darktrace RESPOND active and enabled in autonomous response mode, the SmokeLoader infection was thwarted in the first instance. RESPOND took swift autonomous action by blocking connections to the suspicious endpoints identified by DETECT, blocking all outgoing traffic, and enforcing a pre-established “pattern of life” on offending devices. By enforcing a patten of life on a device, Darktrace RESPOND ensures that it cannot deviate from its ‘normal’ activity to carry out potentially malicious activity, while allowing the device to continue expected business operations.

Figure 9:  A total of 8 RESPOND actions were applied, including blocking connections to suspicious endpoints and domains associated with SmokeLoader.

In addition to the autonomous mitigative actions taken by RESPOND, this customer also received a Proactive Threat Notification (PTN) informing them of potentially malicious activity on their network. This prompted the Darktrace Security Operations Center (SOC) to investigate and document the incident, allowing the customer’s security team to shift their focus to remediating and removing the threat of SmokeLoader.

Conclusion

Ultimately, Darktrace showcased its ability to detect and contain versatile and evasive strains of loader malware, like SmokeLoader. Despite its adeptness at bypassing conventional security tools by frequently changing its C2 infrastructure, utilizing existing processes to infect malicious code, and obfuscating malicious file and domain names, Darktrace’s anomaly-based approach allowed it to recognize such activity as deviations from expected network behavior, regardless of their apparent legitimacy.

Considering SmokeLoader’s wide array of functions, including C2 communication that could be used to facilitate additional attacks like exfiltration, or even the deployment of information-stealers or ransomware, Darktrace proved to be crucial in safeguarding customer networks. By identifying and mitigating SmokeLoader at the earliest possible stage, Darktrace effectively prevented the compromises from escalating into more damaging and disruptive compromises.

With the threat of loader malware expected to continue growing alongside the boom of the MaaS industry, it is paramount for organizations to adopt proactive security solutions, like Darktrace DETECT+RESPOND, that are able to make intelligent decisions to identify and neutralize sophisticated attacks.

Credit to Patrick Anjos, Senior Cyber Analyst, Justin Torres, Cyber Analyst

Appendices

Darktrace DETECT Model Detections

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

- Anomalous File / Multiple EXE from Rare External Locations

- Anomalous File / Numeric File Download

List of IOCs (IOC / Type / Description + Confidence)

- 85.208.139[.]35 / IP / SmokeLoader C2 Endpoint

- 185.174.137[.]109 / IP / SmokeLoader C2 Endpoint

- 45.66.230[.]164 / IP / SmokeLoader C2 Endpoint

- 91.215.85[.]147 / IP / SmokeLoader C2 Endpoint

- tolilolihul[.]net / Hostname / SmokeLoader C2 Endpoint

- bulimu55t[.]net / Hostname / SmokeLoader C2 Endpoint

- potunulit[.]org / Hostname / SmokeLoader C2 Endpoint

- hugersi[.]com / Hostname / SmokeLoader C2 Endpoint

- human[.]art / Hostname / SmokeLoader C2 Endpoint

- 371b0d5c867c2f33ae270faa14946c77f4b0953 / SHA1 / SmokeLoader Executable

References:

[1] https://bazaar.abuse.ch/sample/d7c395ab2b6ef69210221337ea292e204b0f73fef8840b6e64ab88595eda45b3/#intel

[2] https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

[3] https://www.darkreading.com/cyber-risk/breaking-down-the-propagate-code-injection-attack

[4] https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

[5] https://therecord.media/surge-in-smokeloader-malware-attacks-targeting-ukrainian-financial-gov-orgs

MITRE ATT&CK Mapping

Model: Anomalous Connection / New User Agent to IP Without Hostname

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

ID: T1185

Sub technique: -

Tactic: COLLECTION

Technique Name: Man in the Browser

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous File / Multiple EXE from Rare External Locations

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Model: Anomalous File / Numeric File Download

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 8, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

fingerprintDefault blog imageDefault blog image

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

Identity

/

July 7, 2025

Top Eight Threats to SaaS Security and How to Combat Them

login screen for mutli factor authentication Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI