Blog
/
/
June 7, 2020

How Darktrace AI Identified Microsoft 365 Breaches

We cover two real cases on how Darktrace stopped Microsoft 365 account takeovers by correlating insights across SaaS applications & email activity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jun 2020

Social engineering’. ‘Credential theft’. ‘Account takeover’. If you were a fly on the wall of a Security Operations Center in 2020, you would have heard these phrases far more often than ‘banking trojan’, ‘SQL injection’ or ‘exploit kit’. The reason for this is simple – the reality for most security teams now is that their perimeter has shifted into the cloud. Identities are being attacked more than devices.

Microsoft 365 account compromise’ is the current favorite, with 29% of organizations reporting a related incident in one month alone. Security teams struggle with these attacks because the evidence needed to detect them is scattered across the enterprise: they begin via email, are executed over the network, and progress in the cloud. This broad and spread out digital footprint means that following the breadcrumbs is not easy.

Darktrace’s Cyber AI Platform is designed to understand a user’s behavior as they move between devices and cloud services, tracking their activity to identify a compromise. To help understand how these attacks avoid detection, it is useful to look at a couple of examples of Microsoft Office 365 compromise detected recently in one of our customers.

Microsoft 365 compromised to launch external email threat

A Microsoft 365 account was recently compromised at a public accounting firm based in the United States. Darktrace initially picked up on several anomalies, including a sudden surge in outbound email traffic as well as the unusual login location – while the company and nearly all of its users were located in Wisconsin, an IP address located in Kansas was used to log in to the Microsoft 365 account. Along with the unusual login, a login to Microsoft Teams from the same Kansas IP address was detected.

Figure 1: Just after the new email rule was created, a Microsoft Teams 100% rare IP login occurred.

‘Impossible travel’ rules alone would have missed these anomalies, but an understanding of activity and behavior across different SaaS applications allowed Darktrace’s AI to recognize these events as one systematic case of credential theft. When the threat-actor subsequently created a new email rule, Darktrace was able to connect this event with the other anomalous behavior and understand its potentially malicious nature.

Figure 2: Darktrace’s SaaS Module noted a 100% rare IP logging into the user’s Microsoft 365 account and the creation of a new mailbox rules. All factors indicated 100% unusual SaaS activity.

Five minutes later, Antigena Email alerted on a large number of outbound emails containing a generic subject line and an attached PDF. The technology also detected that there was a clear spike in outbound emails from this user and flagged each of these emails with the “Out of Character” tag, which in this case denoted a change from normal behavior with the surge in recipients, and likely internal compromise.

Figure 3: Antigena Email detected a surge in recipients that indicated a serious breach of normal behavior for this user.

The unusual login behavior detected by Darktrace’s SaaS Module could be connected to the anomalous outbound email behavior flagged by Antigena Email, allowing the security team to see the extent of the attack and neutralize it as it emerged. It was clear that the account was being used to engage in malicious activity, as each of the 220 outbound emails used a generic subject line and contained a suspicious attachment. The security team therefore immediately disabled the compromised account.

Figure 4: A recreation of the email sent by the attacker, containing the malicious attachment.

‘Change of bank details’ sent from accounts department

When an Accounts Department’s Microsoft 365 account was compromised and used to send targeted phishing emails, Darktrace was able to track the attacker’s movement within the inbox, tying together information from Darktrace’s SaaS Module with Antigena Email’s alerts to understand the full picture of the threat and stop the attack.

The SaaS account appears to have been compromised via an inbound spear phishing attack, or some other form of attack that occurred before Darktrace began monitoring the organization. While Darktrace Cyber AI had no oversight of the initial compromise, it was still able to distinguish later attacker behavior as malicious, based on its actively evolving understanding of the organization and its workforce.

When the account user logged in from a 100% rare French IP address, Darktrace’s SaaS Module picked up on the anomaly immediately, and further detected a series of activities carried out after the unusual login. At the same time, Antigena Email noted an email being sent.

Figure 5: The login from a French IP was noted as 100% rare for this user and SaaS account.

Darktrace then identified more activity occurring from a second rare login location, a Swiss IP address. Very little email activity occurred when the account was logged in from this IP. Instead, Cyber AI saw the threat-actor using their illegitimate SaaS access to view information on the legitimate account user and files related to banking, invoices, and payments.

Antigena Email then identified a series of email communications that, when seen in the context of the SaaS account compromise, pointed to a clear threat. There were no obvious malicious attachments or links in the emails. However, the subject of the final reply was ‘Change of Bank Details’, and the email prompted a high Solicitation Inducement Score within Antigena Email, strongly implying that the malicious actor had sent emails instructing the destination to change payment details in order to route money to the attacker, instead of the company.

It seems the attackers went through the banking and invoicing files in order to find a customer with a big bill to pay, then used the compromised email account to launch an outbound phishing attack, changing the billing details. With Darktrace AI correlating information within the SaaS platform and insights from Antigena Email, this targeted phishing attack could be contained before further compromise or damage could occur.

The below screenshot also indicates a series of inbox processing rules made on the compromised account, showing actions that are typical of an account takeover.

Figure 6: Darktrace’s records of new inbox rules being set up on the compromised SaaS account.

The benefits of a unified approach

These stories are all too familiar. Most security tools would not be able to take action on any one of these steps individually. But the combination reveals the tell-tale sign of a Microsoft 365 account hijack. Organizations are struggling to manage their user identities across their cloud infrastructure, and rule and policy-based detection is no longer feasible.

However, by learning identities and behavior across the enterprise, Darktrace is able to detect, and seamlessly respond, to combat these threats. Hundreds of organizations are now using Antigena Email to protect their email and cloud environments continuously, trusting it to dynamically enforce MFA, lock accounts, block network traffic, and withhold emails when necessary.

As cloud-native applications become more popular, organizations face the growing problem of separate end-to-end security solutions for each type of workload. With Antigena Email working in conjunction with Darktrace’s Enterprise Immune System, defenders can be assured that a single, unified platform is tracking every suspicious behavior, wherever it arises in the organization.

Learn more about Antigena Email

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI