Blog
/
/
April 12, 2022

Efficient Incident Reporting: Darktrace AI Analyst

Discover how Darktrace's Cyber AI Analyst accelerates incident reporting to the US federal government, enhancing cybersecurity response times.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Sally Kenyon Grant
VP, Darktrace Federal
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Apr 2022

On March 15, 2022, President Biden signed the Cyber Incident Reporting for Critical Infrastructure Act into law, included as part of the Congressional Omnibus Appropriations bill. The law requires critical infrastructure owners and operators to quickly notify the Cyber and Infrastructure Security Agency (CISA) of ransomware payments and significant cyber-attacks.

The Cyber Incident Reporting for Critical Infrastructure Act creates two new reporting requirements:

  1. an obligation to report certain cyber incidents to DHS CISA within 72 hours
  2. an obligation to report ransomware payments within 24 hours

Supporting the new law, Darktrace AI accelerates the cyber incident reporting process. Specifically, Darktrace’s Cyber AI Analyst understands the connections among disparate security incidents with supervised machine learning and autonomously writes incident reports in human-readable language using natural language processing (NLP). These Darktrace incident reports allow human analysts to send reports to CISA quickly and efficiently.

In the below real-world attack case study, we demonstrate how Cyber AI Analyst facilitates seamless reporting for critical infrastructure organizations that fall victim to ransomware and malicious data exfiltration. The AI technology, trained on human analyst behavior, replicates investigations at machine speed and scale, surfacing relevant details in minutes and allowing security teams to understand what happened precisely and share this information with the relevant authorities.

The below threat investigation details a significant threat find on a step by step level in technical detail to demonstrate the power and speed of Cyber AI Analyst.

Cyber AI Analyst’s incident report

When ransomware struck this organization, Cyber AI Analyst was invaluable, autonomously investigating the full scope of the incident and generating a natural language summary that clearly showed the progression of the attack.

Figure 1: Cyber AI Analyst reveals the full scope of the attack

In the aftermath of this attack, Darktrace’s technology also offered analyst assistance in mapping out the timeline of the attack and identifying what files were compromised, helping the security team identify anomalous activity related to the ransomware attack.

Figure 2: Cyber AI Analyst showing the stages of the attack chain undergone by the compromised device

With Darktrace AI’s insights, the team easily identified the timeline of the attack, affected devices, credentials used, file shares accessed, files exfiltrated, and malicious endpoints contacted, enabling the customer to disclose the scale of the attack and notify necessary parties.

This example demonstrates how Cyber AI Analyst empowers critical infrastructure owners and operators to swiftly report major cyber-attacks to the federal government. Considering that 72 hours is the reporting period is for significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Attack breakdown: Ransomware and data exfiltration

Cyber AI Analyst delivered the most critical information in an easy-to-read report — with no human touch involved — as shown in the incident report above. We will now break down the attack further to demonstrate how Darktrace’s Self-Learning AI understood the unusual activity throughout the attack lifecycle.

In this double extortion ransomware, attackers exfiltrated data over 22 days. The detections made by Darktrace’s Self-Learning AI, and the parallel investigation by Cyber AI Analyst, were used to map the attack chain and identify how and what data had been exfiltrated and encrypted.

The attack consisted of three general groups of events:

  • Unencrypted FTP (File Transfer Protocol) data exfiltration to rare malicious external endpoint in Bulgaria (May 9 07:23:46 UTC – May 21 03:06:46 UTC)
  • Ransomware encryption of files in network file shares (May 25 01:00:27 UTC – May 30 07:09:53 UTC)
  • Encrypted SSH (Secure Shell) data exfiltration to rare malicious external endpoint (May 29 16:43:37 UTC – May 30 13:23:59 UTC)
Figure 3: Timeline of the attack alongside Darktrace model breaches

First, uploads of internal data to a rare external endpoint in Bulgaria were observed within the networks. The exfiltration was preceded by SMB reads of internal file shares before approximately 450GB of data was exfiltrated via FTP.

Darktrace’s AI identified this threatening activity on its own, and the organization was quickly able to pinpoint what data had been exfiltrated, including files camouflaged by markings such as ‘Talent Acquisition’ and ‘Engineering and Construction,’ and legal and financial documents — suggesting that these were documents of an extremely sensitive nature.

Figure 4: Screenshots showing two model breaches relating to external uploads over FTP
Figure 5: Screenshot showing SMB reads from a file share before FTP upload

Model breaches:

  • Anomalous Connection / Unusual Incoming Data Volume
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / High Volume Server Data Transfer
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / SMB Lateral Movement

Four days following this observed activity, Darktrace’s AI detected the deployment of ransomware when multiple compromised devices began making anomalous SMB connections to file shares that they do not typically access, reading and writing similar volumes to the SMB file shares, as well as writing additional extensions to files over SMB. The file extension comprised a random string of letters and was likely to be unique to this target.

Using Darktrace, the customer obtained a full list of files that had been encrypted. The list included apparent financial records in an ‘Accounts’ file share.

Figure 6: Model breach showing additional extension written to file during ransomware encryption

Model breaches:

  • Anomalous Connection / Unusual Incoming Data Volume
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / High Volume Server Data Transfer
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / SMB Lateral Movement

Simultaneously, uploads of internal data to a rare external endpoint were observed within the network. The uploads were all performed using encrypted SSH/SFTP. In total, approximately 3.5GB of data was exfiltrated this way.

Despite the attacker using an encrypted channel to exfiltrate this data, Darktrace detected anomalous SMB file transfers prior to the external upload, indicating which files were exfiltrated. Here, Darktrace’s ability to go ‘back in time’ proved invaluable in helping analysts determine which files had been exfiltrated, although they were exfiltrated via an encrypted means.

Figure 7: Model breaches showing anomalous SMB activity before upload over SSH

Model breaches:

  • Anomalous Server Activity / Outgoing from Server
  • Compliance / SSH to Rare External Destination
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Data Sent To New External Device

How did the attack bypass the rest of the security stack?

Existing administrative credentials were used to escalate privileges within the network and perform malicious activity.

Had Darktrace Antigena been active, it would have actioned a targeted, autonomous response to contain the activity in its early stages. Antigena would have enforced the ‘pattern of life’ on the devices involved in anomalous SMB activity — containing activity such as reading from file shares that are not normally connected, appending extensions to files and blocking outgoing connections to rare external endpoints.

However, in this case, Antigena was not set up to take action – it was configured in Human Confirmation mode. The incident was clearly alerted on by Darktrace, and appeared as a top priority item in the security team’s workflow. However, the security team was not monitoring Darktrace’s user interface, and in the absence of any action taken by other tools, the attack was allowed to progress, and the organization was obligated to disclose the details of the incident.

Streamlining the reporting process

In the modern threat landscape, leaning on AI to stop fast-moving and sophisticated attacks at machine speed and scale is critical. As this attack shows, the technology also helps organizations fulfill reporting requirements in the aftermath of an attack.

New legislation requires timely disclosure; with many traditional approaches to security, organizations do not have the capacity to surface the full details after an attack. On top of this, collating these details can take days or weeks. This is why Darktrace is no longer a nice-to-have but a must-have for critical infrastructure organizations, which are now required to report significant incidents swiftly.

Darktrace’s AI detects malicious activity as it happens and empowers customers to quickly understand the timeline of a compromise, as well as files accessed and exfiltrated by an attacker. This not only prepares organizations to resist the most sophisticated attacks, but also accelerates and radically simplifies the process of reporting the data breach.

Security teams should not have to confront disclosure processes on their own. Attacks happen fast, and their aftermaths are messy – retrospective investigation of lost data can be a futile effort with traditional approaches. With Darktrace, security teams can meet disruptive and sudden attacks with precise and nimble means of uncovering data, as well as detection and mitigation of risk. And, should the need arise, rapid and accurate reporting of events is laid out on a silver platter by the AI.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Sally Kenyon Grant
VP, Darktrace Federal

More in this series

No items found.

Blog

/

Network

/

January 9, 2026

Under Medusa’s Gaze: How Darktrace Uncovers RMM Abuse in Ransomware Campaigns

madusa ransomwareDefault blog imageDefault blog image

What is Medusa Ransomware in 2025?

In 2025, the Medusa Ransomware-as-a-Service (RaaS) emerged as one of the top 10 most active ransomware threat actors [1]. Its growing impact prompted a joint advisory from the US Cybersecurity and Infrastructure Security Agency (CISA) and the Federal Bureau of Investigation (FBI) [3]. As of January 2026, more than 500 organizations have fallen victim to Medusa ransomware [2].

Darktrace previously investigated Medusa in a 2024 blog, but the group’s rapid expansion and new intelligence released in late 2025 has lead Darktrace’s Threat Research team to  investigate further. Recent findings include Microsoft’s research on Medusa actors exploiting a vulnerability in Fortra’s GoAnywhere MFT License Servlet (CVE-2025-10035)[4] and Zencec’s report on Medusa’s abuse of flaws in SimpleHelp’s remote support software (CVE-2024-57726, CVE-2024-57727, CVE-2024-57728) [5].

Reports vary on when Medusa first appeared in the wild. Some sources mention June 2021 as the earliest sightings, while others point to late 2022, when its developers transitioned to the RaaS model, as the true beginning of its operation [3][11].

Madusa Ransomware history and background

The group behind Medusa is known by several aliases, including Storm-1175 and Spearwing [4] [7]. Like its mythological namesake, Medusa has many “heads,” collaborating with initial access brokers (IABs) and, according to some evidence, affiliating with Big Game Hunting (BGH) groups such as Frozen Spider, as well as the cybercriminal group UNC7885 [3][6][13].

Use of Cyrillic in its scripts, activity on Russian-language cybercrime forums, slang unique to Russian criminal subcultures, and avoidance of targets in Commonwealth of Independent States (CIS) countries suggest that Medusa operates from Russia or an allied state [11][12].

Medusa ransomware should not be confused with other similarly named malware, such as the Medusa Android Banking Trojan, the Medusa Botnet/Medusa Stealer, or MedusaLocker ransomware. It is easily distinguishable from these variants because it appends the extension .MEDUSA to encrypted files and drops the ransom note !!!READ_ME_MEDUSA!!!.txt on compromised systems [8].

Who does Madusa Ransomware target?

The group appears to show little restraint, indiscriminately attacking organizations across all sectors, including healthcare, and is known to employ triple extortion tactics whereby sensitive data is encrypted, victims are threatened with data leaks, and additional pressure is applied through DDoS attacks or contacting the victim’s customers, rather than the more common double extortion model [13].

Madusa Ransomware TTPs

To attain initial access, Medusa actors typically purchase access to already compromised devices or accounts via IABs that employ phishing, credential stuffing, or brute-force attacks, and also target vulnerable or misconfigured Internet-facing systems.

In addition to the GoAnywhere MFT and SimpleHelp RMM flaws, other vulnerabilities exploited in Medusa attacks include ConnectWise ScreenConnect RMM (CVE-2024-1709), Microsoft Exchange Server (CVE-2021-34473, also known as ProxyShell), and Fortinet Enterprise Management Servers (CVE-2023-48788) [18][19][20][21][24][25].

Darktrace’s Coverage of Medusa Ransomware

Between December 2023 and November 2025, Darktrace observed multiple cases of file encryption related to Medusa ransomware across its customer base. When enabled, Darktrace’s Autonomous Response capability intervened early in the attack chain, blocking malicious activity before file encryption could begin.

Some of the affected were based in Europe, the Middle East and Africa (EMEA), others in the Americas (AMS), and the remainder in the Asia-Pacific and Japan region. The most impacted sectors were financial services and the automotive industry, followed by healthcare, and finally organizations in arts, entertainment and recreation, ICT, and manufacturing.

Remote Monitoring and Management (RMM) tool abuse

In most customer environments where Medusa file encryption attempts were observed, and in one case where the compromise was contained before encryption, unusual external HTTP connections associated with JWrapper were also detected. JWrapper is a legitimate tool designed to simplify the packaging, distribution, and management of Java applications, enabling the creation of executables that run across different operating systems. Many of the destination IP addresses involved in this activity were linked to SimpleHelp servers or associated with Atera.

Medusa actors appear to favor RMM tools such as SimpleHelp. Unpatched or misconfigured SimpleHelp RMM servers can serve as an initial access vector to the victims’ infrastructure.  After gaining access to SimpleHelp management servers, the threat actors edit server configuration files to redirect existing SimpleHelp RMM agents to communicate with unauthorized servers under their control.

The SimpleHelp tool is not only used for command-and-control (C2) and enabling persistence but is also observed during lateral movement within the network, downloading additional attack tools, data exfiltration, and even ransomware binary execution. Other legitimate remote access tools abused by Medusa in a similar manner to evade detection include Atera, AnyDesk, ScreenConnect, eHorus, N-able, PDQ Deploy/Inventory, Splashtop, TeamViewer, NinjaOne, Navicat, and MeshAgent [4][5][15][16][17].

Data exfiltration

Another correlation among Darktrace customers affected by Medusa was observed during the data exfiltration phase. In several environments, data was exfiltrated to the endpoints erp.ranasons[.]com or pruebas.pintacuario[.]mx (143.110.243[.]154, 144.217.181[.]205) over ports 443, 445, and 80. erp.ranasons[.]com was seemingly active between November 2024 and September 2025, while pruebas.pintacuario[.]mx was seen from November 2024 to March 2025. Evidence suggests that pruebas.pintacuario[.]mx previously hosted a SimpleHelp server [22][23].

Apart from RMM tools, Medusa is also known to use Rclone and Robocopy for data exfiltration [3][19]. During one Medusa compromise detected in mid-2024, the customer’s data was exfiltrated to external destinations associated with the Ngrok proxy service using an SSH-2.0-rclone client.

Medusa Compromise Leveraging SimpleHelp

In Q4 2025, Darktrace assisted a European company impacted by Medusa ransomware. The organization had partial Darktrace / NETWORK coverage and had configured Darktrace’s Autonomous Response capability to require manual confirmation for all actions. Despite these constraints, data received through the customer’s security integration with CrowdStrike Falcon enabled Darktrace analysts to reconstruct the attack chain, although the initial access vector remains unclear due to limited visibility.

In late September 2025, a device out of the scope of Darktrace's visibility began scanning the network and using RDP, NTLM/SMB, DCE_RPC, and PowerShell for lateral movement.

CrowdStrike “Defense Evasion: Disable or Modify Tools” alerts related to a suspicious driver (c:\windows\[0-9a-b]{4}.exe) and a PDQ Deploy executable (share=\\<device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\[0-9a-b]{4}.exe) suggest that the attackers used the Bring Your Own Vulnerable Driver (BYOVD) technique to terminate antivirus processes on network devices, leveraging tools such as KillAV or AbyssWorker along with the PDQ Software Deployment solution [19][26].

A few hours later, Darktrace observed the same device that had scanned the network writing Temp\[a-z]{2}.exe over SMB to another device on the same subnet. According to data from the CrowdStrike alert, this executable was linked to an RMM application located at C:\Users\<compromised_user>\Documents\[a-z]{2}.exe. The same compromised user account later triggered a CrowdStrike “Command and Control: Remote Access Tools” alert when accessing C:\ProgramData\JWrapper-Remote Access\JWrapper-Remote Access Bundle-[0-9]{11}\JWrapperTemp-[0-9]{10}-[0-9]{1}-app\bin\windowslauncher.exe [27].

An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.
Figure 1: An executable file associated with the SimpleHelp RMM tool being written to other devices using the SMB protocol, as detected by Darktrace.

Soon after, the destination device and multiple other network devices began establishing connections to 31.220.45[.]120 and 213.183.63[.]41, both of which hosted malicious SimpleHelp RMM servers. These C2 connections continued for more than 20 days after the initial compromise.

CrowdStrike integration alerts for the execution of robocopy . "c:\windows\\" /COPY:DT /E /XX /R:0 /W:0 /NP /XF RunFileCopy.cmd /IS /IT commands on several Windows servers, suggested that this utility was likely used to stage files in preparation for data exfiltration [19].

Around two hours later, Darktrace detected another device connecting to the attacker’s SimpleHelp RMM servers. This internal server had ‘doc’ in its hostname, indicating it was likely a file server. It was observed downloading documents from another internal server over SMB and uploading approximately 70 GiB of data to erp.ranasons[.]com (143.110.243[.]154:443).

Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.
Figure 2: Data uploaded to erp.ranasons[.]com and the number of model alerts from the exfiltrating device, represented by yellow and orange dots.

Darktrace’s Cyber AI Analyst autonomously investigated the unusual connectivity, correlating the separate C2 and data exfiltration events into a single incident, providing greater visibility into the ongoing attack.

Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
Figure 3: Cyber AI Analyst identified a file server making C2 connections to an attacker-controlled SimpleHelp server (213.183.63[.]41) and exfiltrating data to erp.ranasons[.]com.
The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).
Figure 4: The same file server that connected to 213.183.63[.]41 and exfiltrated data to erp.ranasons[.]com was also observed attempting to connect to an IP address associated with Moscow, Russia (193.37.69[.]154:7070).

One of the devices connecting to the attacker's SimpleHelp RMM servers was also observed downloading 35 MiB from [0-9]{4}.filemail[.]com. Filemail, a legitimate file-sharing service, has reportedly been abused by Medusa actors to deliver additional malicious payloads [11].

A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.
Figure 5: A device controlled remotely via SimpleHelp downloading additional tooling from the Filemail file-sharing service.

Finally, integration alerts related to the ransomware binary, such as c:\windows\system32\gaze.exe and <device_hostname>\ADMIN$ file=AdminArsenal\PDQDeployRunner\service-1\exec\gaze.exe, along with “!!!READ_ME_MEDUSA!!!.txt” ransom notes were observed on network devices. This indicates that file encryption in this case was most likely carried out directly on the victim hosts rather than via the SMB protocol [3].

Conclusion

Threat actors, including nation-state actors and ransomware groups like Medusa, have long abused legitimate commercial RMM tools, typically used by system administrators for remote monitoring, software deployment, and device configuration, instead of relying on remote access trojans (RATs).

Attackers employ existing authorized RMM tools or install new remote administration software to enable persistence, lateral movement, data exfiltration, and ingress tool transfer. By mimicking legitimate administrative behavior, RMM abuse enables attackers to evade detection, as security software often implicitly trusts these tools, allowing attackers to bypass traditional security controls [28][29][30].

To mitigate such risks, organizations should promptly patch publicly exposed RMM servers and adopt anomaly-based detection solutions, like Darktrace / NETWORK, which can distinguish legitimate administrative activity from malicious behavior, applying rapid response measures through its Autonomous Response capability to stop attacks in their tracks.

Darktrace delivers comprehensive network visibility and Autonomous Response capabilities, enabling real-time detection of anomalous activity and rapid mitigation, even if an organization fall under Medusa’s gaze.

Credit to Signe Zaharka (Principal Cyber Analyst) and Emma Foulger (Global Threat Research Operations Lead

Edited by Ryan Traill (Analyst Content Lead)

Appendices

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence + Time Observed

185.108.129[.]62 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - March 7, 2023

185.126.238[.]119 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 26-27, 2024

213.183.63[.]41 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - November 28, 2024 - Sep 30, 2025

213.183.63[.]42 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - July 4 -9 , 2024

31.220.45[.]120 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - September 12 - Oct 20 , 2025

91.92.246[.]110 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - May 24, 2024

45.9.149[.]112:15330 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 21, 2024

89.36.161[.]12 IP address Malicious SimpleHelp server observed during Medusa attacks (High confidence) - June 26-28, 2024

193.37.69[.]154:7070 IP address Suspicious RU IP seen on a device being controlled via SimpleHelp and exfiltrating data to a Medusa related endpoint - September 30 - October 20, 2025

erp.ranasons[.]com·143.110.243[.]154 Hostname Data exfiltration destination - November 27, 2024 - September 30, 2025

pruebas.pintacuario[.]mx·144.217.181[.]205 - Hostname Data exfiltration destination - November 27, 2024  -  March 26, 2025

lirdel[.]com · 44.235.83[.]125/a.msi (1b9869a2e862f1e6a59f5d88398463d3962abe51e19a59) File & hash Atera related file downloaded with PowerShell - June 20, 2024

wizarr.manate[.]ch/108.215.180[.]161:8585/$/1dIL5 File Suspicious file observed on one of the devices exhibiting unusual activity during a Medusa compromise - February 28, 2024

!!!READ_ME_MEDUSA!!!.txt" File - Ransom note

*.MEDUSA - File extension        File extension added to encrypted files

gaze.exe – File - Ransomware binary

Darktrace Model Coverage

Darktrace / NETWORK model detections triggered during connections to attacker controlled SimpleHelp servers:

Anomalous Connection/Anomalous SSL without SNI to New External

Anomalous Connection/Multiple Connections to New External UDP Port

Anomalous Connection/New User Agent to IP Without Hostname

Anomalous Connection/Rare External SSL Self-Signed

Anomalous Connection/Suspicious Self-Signed SSL

Anomalous File/EXE from Rare External Location

Anomalous Server Activity/Anomalous External Activity from Critical Network Device

Anomalous Server Activity/New User Agent from Internet Facing System

Anomalous Server Activity/Outgoing from Server

Anomalous Server Activity/Rare External from Server

Compromise/High Volume of Connections with Beacon Score

Compromise/Large Number of Suspicious Failed Connections

Compromise/Ransomware/High Risk File and Unusual SMB

Device/New User Agent

Unusual Activity/Unusual External Data to New Endpoint

Unusual Activity/Unusual External Data Transfer

Darktrace / NETWORK Model Detections during the September/October 2025 Medusa attack:

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous File / Internal/Unusual Internal EXE File Transfer

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / Possible Unencrypted Password File On Server

Compliance / Remote Management Tool On Server

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Ransomware/High Risk File and Unusual SMB

Compromise / Suspicious Beaconing Behaviour

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / ICMP Address Scan

Device / Increase in New RPC Services

Device / Initial Attack Chain Activity

Device / Large Number of Model Alert

Device / Large Number of Model Alerts from Critical Network Device

Device / Lateral Movement and C2 Activity

Device / Multiple C2 Model Alert

Device / Network Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Spike in LDAP Activity

Device / Suspicious Network Scan Activity

Device / Suspicious SMB Scanning Activity

Security Integration / High Severity Integration Incident

Security Integration / Low Severity Integration Incident

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Internal Data Transfer

Unusual Activity / Unusual External Activity

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / New Admin Credentials on Server

Autonomous Response Actions

Antigena / Network/External Threat/Antigena File then New Outbound Block

Antigena / Network/External Threat/Antigena Ransomware Block

Antigena / Network/External Threat/Antigena Suspicious Activity Block

Antigena / Network/External Threat/Antigena Suspicious File Block

Antigena / Network/Insider Threat/Antigena Internal Anomalous File Activity

Antigena / Network/Insider Threat/Antigena Internal Data Transfer Block

Antigena / Network/Insider Threat/Antigena Large Data Volume Outbound Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network/Insider Threat/Antigena Unusual Privileged User Activities Block

Antigena / Network/Significant Anomaly/Antigena Alerts Over Time Block

Antigena / Network/Significant Anomaly/Antigena Controlled and Model Alert

Antigena / Network/Significant Anomaly/Antigena Enhanced Monitoring from Server Block

Antigena / Network/Significant Anomaly/Antigena Significant Server Anomaly Block

Antigena / Network/Significant Anomaly/Repeated Antigena Alerts

MITRE ATT&CK Mapping

Technique Name, Tactic, ID, Sub-Technique

Application Layer Protocol , COMMAND AND CONTROL , T1071

Automated Collection , COLLECTION , T1119

Automated Exfiltration , EXFILTRATION , T1020

Brute Force , CREDENTIAL ACCESS , T1110

Client Configurations , RECONNAISSANCE , T1592.004 , T1592

Cloud Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.004 , T1078

Command-Line Interface , EXECUTION ICS , T0807

Credential Stuffing , CREDENTIAL ACCESS , T1110.004 , T1110

Data Encrypted for Impact , IMPACT , T1486

Data from Network Shared Drive , COLLECTION , T1039

Data Obfuscation , COMMAND AND CONTROL , T1001

Data Staged , COLLECTION , T1074

Data Transfer Size Limits , EXFILTRATION , T1030

Default Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078.001 , T1078

Default Credentials , LATERAL MOVEMENT ICS , T0812

Distributed Component Object Model , LATERAL MOVEMENT , T1021.003 , T1021

Drive-by Compromise , INITIAL ACCESS ICS , T0817

Drive-by Compromise , INITIAL ACCESS , T1189

Email Collection , COLLECTION , T1114

Exfiltration Over Alternative Protocol , EXFILTRATION , T1048

Exfiltration Over C2 Channel , EXFILTRATION , T1041

Exfiltration to Cloud Storage , EXFILTRATION , T1567.002 , T1567

Exploit Public-Facing Application , INITIAL ACCESS , T1190

Exploitation for Privilege Escalation , PRIVILEGE ESCALATION , T0890

Exploitation of Remote Services , LATERAL MOVEMENT , T1210

Exploits , RESOURCE DEVELOPMENT , T1588.005 , T1588

File and Directory Discovery , DISCOVERY , T1083

File Deletion , DEFENSE EVASION , T1070.004 , T1070

Graphical User Interface , EXECUTION ICS , T0823

Ingress Tool Transfer , COMMAND AND CONTROL , T1105

Lateral Tool Transfer , LATERAL MOVEMENT , T1570

LLMNR/NBT-NS Poisoning and SMB Relay , CREDENTIAL ACCESS ,  COLLECTION , T1557.001 , T1557

Malware , RESOURCE DEVELOPMENT , T1588.001 , T1588

Network Service Scanning , DISCOVERY , T1046

Network Share Discovery , DISCOVERY , T1135

Non-Application Layer Protocol , COMMAND AND CONTROL , T1095

Non-Standard Port , COMMAND AND CONTROL , T1571

One-Way Communication , COMMAND AND CONTROL , T1102.003 , T1102

Pass the Hash , DEFENSE EVASION ,  LATERAL MOVEMENT , T1550.002 , T1550

Password Cracking , CREDENTIAL ACCESS , T1110.002 , T1110

Password Guessing , CREDENTIAL ACCESS , T1110.001 , T1110

Password Spraying , CREDENTIAL ACCESS , T1110.003 , T1110

Program Download , LATERAL MOVEMENT ICS , T0843

Program Upload , COLLECTION ICS , T0845

Remote Access Software , COMMAND AND CONTROL , T1219

Remote Desktop Protocol , LATERAL MOVEMENT , T1021.001 , T1021

Remote System Discovery , DISCOVERY , T1018

Scanning IP Blocks , RECONNAISSANCE , T1595.001 , T1595

Scheduled Transfer , EXFILTRATION , T1029

Spearphishing Attachment , INITIAL ACCESS ICS , T0865

Standard Application Layer Protocol , COMMAND AND CONTROL ICS , T0869

Supply Chain Compromise , INITIAL ACCESS ICS , T0862

User Execution , EXECUTION ICS , T0863

Valid Accounts , DEFENSE EVASION ,  PERSISTENCE ,  PRIVILEGE ESCALATION ,  INITIAL ACCESS , T1078

Valid Accounts , PERSISTENCE ICS ,  LATERAL MOVEMENT ICS , T0859

Vulnerabilities , RESOURCE DEVELOPMENT , T1588.006 , T1588

Vulnerability Scanning , RECONNAISSANCE , T1595.002 , T1595

Web Protocols , COMMAND AND CONTROL , T1071.001 , T1071

References

1. https://www.intel471.com/blog/threat-hunting-case-study-medusa-ransomware

2. https://www.ransomware.live/group/medusa

3. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-071a

4. https://www.microsoft.com/en-us/security/blog/2025/10/06/investigating-active-exploitation-of-cve-2025-10035-goanywhere-managed-file-transfer-vulnerability/

5. https://zensec.co.uk/blog/how-rmm-abuse-fuelled-medusa-dragonforce-attacks/

6. https://www.checkpoint.com/cyber-hub/threat-prevention/ransomware/medusa-ransomware-group/

7. https://cyberpress.org/medusa-ransomware-attacks-spike-42/

8. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

10. https://www.cyberdaily.au/security/10021-more-monster-than-myth-unpacking-the-medusa-ransomware-operation

11. https://unit42.paloaltonetworks.com/medusa-ransomware-escalation-new-leak-site/

12. https://www.bitdefender.com/en-us/blog/businessinsights/medusa-ransomware-a-growing-threat-with-a-bold-online-presence

13. https://redpiranha.net/news/medusa-ransomware-everything-you-need-know

14.  https://www.theregister.com/2025/03/13/medusa_ransomware_infects_300_critical/

15. https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

16. https://nagomisecurity.com/medusa-ransomware-us-cert-alert

17. https://arcticwolf.com/resources/blog/arctic-wolf-observes-campaign-exploiting-simplehelp-rmm-software-for-initial-access/

18. https://securityboulevard.com/2025/04/medusa-ransomware-inside-the-2025-resurgence-of-one-of-the-internets-most-aggressive-threats/

19. https://thehackernews.com/2025/03/medusa-ransomware-hits-40-victims-in.html

20.  https://www.quorumcyber.com/threat-intelligence/critical-alert-medusa-ransomware-threat-highlighted-by-fbi-cisa-and-ms-isac/

21. https://brandefense.io/blog/stone-gaze-in-depth-analysis-of-medusa-ransomware/

22. https://www.darktrace.com/ja/blog/2025-cyber-threat-landscape-darktraces-mid-year-review

23. https://www.joesandbox.com/analysis/1576447/0/html

24. https://blog.barracuda.com/2025/02/25/medusa-ransomware-and-its-cybercrime-ecosystem

25. https://shassit.mit.edu/news/medusa-ransomware-attacks-on-gmail/

26. https://thehackernews.com/2025/03/medusa-ransomware-uses-malicious-driver.html

27. https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-163a

28. https://www.catonetworks.com/blog/cato-ctrl-investigation-of-rmm-tools/

29. https://redcanary.com/threat-detection-report/trends/rmm-tools/

30. https://www.proofpoint.com/us/blog/threat-insight/remote-monitoring-and-management-rmm-tooling-increasingly-attackers-first-choice

Continue reading
About the author
Signe Zaharka
Principal Cyber Analyst

Blog

/

/

January 8, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI