Blog
/
Compliance
/
April 12, 2022

Efficient Incident Reporting: Darktrace AI Analyst

Discover how Darktrace's Cyber AI Analyst accelerates incident reporting to the US federal government, enhancing cybersecurity response times.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Sally Kenyon Grant
VP, Darktrace Federal
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Apr 2022

On March 15, 2022, President Biden signed the Cyber Incident Reporting for Critical Infrastructure Act into law, included as part of the Congressional Omnibus Appropriations bill. The law requires critical infrastructure owners and operators to quickly notify the Cyber and Infrastructure Security Agency (CISA) of ransomware payments and significant cyber-attacks.

The Cyber Incident Reporting for Critical Infrastructure Act creates two new reporting requirements:

  1. an obligation to report certain cyber incidents to DHS CISA within 72 hours
  2. an obligation to report ransomware payments within 24 hours

Supporting the new law, Darktrace AI accelerates the cyber incident reporting process. Specifically, Darktrace’s Cyber AI Analyst understands the connections among disparate security incidents with supervised machine learning and autonomously writes incident reports in human-readable language using natural language processing (NLP). These Darktrace incident reports allow human analysts to send reports to CISA quickly and efficiently.

In the below real-world attack case study, we demonstrate how Cyber AI Analyst facilitates seamless reporting for critical infrastructure organizations that fall victim to ransomware and malicious data exfiltration. The AI technology, trained on human analyst behavior, replicates investigations at machine speed and scale, surfacing relevant details in minutes and allowing security teams to understand what happened precisely and share this information with the relevant authorities.

The below threat investigation details a significant threat find on a step by step level in technical detail to demonstrate the power and speed of Cyber AI Analyst.

Cyber AI Analyst’s incident report

When ransomware struck this organization, Cyber AI Analyst was invaluable, autonomously investigating the full scope of the incident and generating a natural language summary that clearly showed the progression of the attack.

Figure 1: Cyber AI Analyst reveals the full scope of the attack

In the aftermath of this attack, Darktrace’s technology also offered analyst assistance in mapping out the timeline of the attack and identifying what files were compromised, helping the security team identify anomalous activity related to the ransomware attack.

Figure 2: Cyber AI Analyst showing the stages of the attack chain undergone by the compromised device

With Darktrace AI’s insights, the team easily identified the timeline of the attack, affected devices, credentials used, file shares accessed, files exfiltrated, and malicious endpoints contacted, enabling the customer to disclose the scale of the attack and notify necessary parties.

This example demonstrates how Cyber AI Analyst empowers critical infrastructure owners and operators to swiftly report major cyber-attacks to the federal government. Considering that 72 hours is the reporting period is for significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Attack breakdown: Ransomware and data exfiltration

Cyber AI Analyst delivered the most critical information in an easy-to-read report — with no human touch involved — as shown in the incident report above. We will now break down the attack further to demonstrate how Darktrace’s Self-Learning AI understood the unusual activity throughout the attack lifecycle.

In this double extortion ransomware, attackers exfiltrated data over 22 days. The detections made by Darktrace’s Self-Learning AI, and the parallel investigation by Cyber AI Analyst, were used to map the attack chain and identify how and what data had been exfiltrated and encrypted.

The attack consisted of three general groups of events:

  • Unencrypted FTP (File Transfer Protocol) data exfiltration to rare malicious external endpoint in Bulgaria (May 9 07:23:46 UTC – May 21 03:06:46 UTC)
  • Ransomware encryption of files in network file shares (May 25 01:00:27 UTC – May 30 07:09:53 UTC)
  • Encrypted SSH (Secure Shell) data exfiltration to rare malicious external endpoint (May 29 16:43:37 UTC – May 30 13:23:59 UTC)
Figure 3: Timeline of the attack alongside Darktrace model breaches

First, uploads of internal data to a rare external endpoint in Bulgaria were observed within the networks. The exfiltration was preceded by SMB reads of internal file shares before approximately 450GB of data was exfiltrated via FTP.

Darktrace’s AI identified this threatening activity on its own, and the organization was quickly able to pinpoint what data had been exfiltrated, including files camouflaged by markings such as ‘Talent Acquisition’ and ‘Engineering and Construction,’ and legal and financial documents — suggesting that these were documents of an extremely sensitive nature.

Figure 4: Screenshots showing two model breaches relating to external uploads over FTP
Figure 5: Screenshot showing SMB reads from a file share before FTP upload

Model breaches:

  • Anomalous Connection / Unusual Incoming Data Volume
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / High Volume Server Data Transfer
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / SMB Lateral Movement

Four days following this observed activity, Darktrace’s AI detected the deployment of ransomware when multiple compromised devices began making anomalous SMB connections to file shares that they do not typically access, reading and writing similar volumes to the SMB file shares, as well as writing additional extensions to files over SMB. The file extension comprised a random string of letters and was likely to be unique to this target.

Using Darktrace, the customer obtained a full list of files that had been encrypted. The list included apparent financial records in an ‘Accounts’ file share.

Figure 6: Model breach showing additional extension written to file during ransomware encryption

Model breaches:

  • Anomalous Connection / Unusual Incoming Data Volume
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / SMB Reads then Writes with Additional Extensions
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / High Volume Server Data Transfer
  • Unusual Activity / Sustained Anomalous SMB Activity
  • Device / SMB Lateral Movement

Simultaneously, uploads of internal data to a rare external endpoint were observed within the network. The uploads were all performed using encrypted SSH/SFTP. In total, approximately 3.5GB of data was exfiltrated this way.

Despite the attacker using an encrypted channel to exfiltrate this data, Darktrace detected anomalous SMB file transfers prior to the external upload, indicating which files were exfiltrated. Here, Darktrace’s ability to go ‘back in time’ proved invaluable in helping analysts determine which files had been exfiltrated, although they were exfiltrated via an encrypted means.

Figure 7: Model breaches showing anomalous SMB activity before upload over SSH

Model breaches:

  • Anomalous Server Activity / Outgoing from Server
  • Compliance / SSH to Rare External Destination
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Data Sent To New External Device

How did the attack bypass the rest of the security stack?

Existing administrative credentials were used to escalate privileges within the network and perform malicious activity.

Had Darktrace Antigena been active, it would have actioned a targeted, autonomous response to contain the activity in its early stages. Antigena would have enforced the ‘pattern of life’ on the devices involved in anomalous SMB activity — containing activity such as reading from file shares that are not normally connected, appending extensions to files and blocking outgoing connections to rare external endpoints.

However, in this case, Antigena was not set up to take action – it was configured in Human Confirmation mode. The incident was clearly alerted on by Darktrace, and appeared as a top priority item in the security team’s workflow. However, the security team was not monitoring Darktrace’s user interface, and in the absence of any action taken by other tools, the attack was allowed to progress, and the organization was obligated to disclose the details of the incident.

Streamlining the reporting process

In the modern threat landscape, leaning on AI to stop fast-moving and sophisticated attacks at machine speed and scale is critical. As this attack shows, the technology also helps organizations fulfill reporting requirements in the aftermath of an attack.

New legislation requires timely disclosure; with many traditional approaches to security, organizations do not have the capacity to surface the full details after an attack. On top of this, collating these details can take days or weeks. This is why Darktrace is no longer a nice-to-have but a must-have for critical infrastructure organizations, which are now required to report significant incidents swiftly.

Darktrace’s AI detects malicious activity as it happens and empowers customers to quickly understand the timeline of a compromise, as well as files accessed and exfiltrated by an attacker. This not only prepares organizations to resist the most sophisticated attacks, but also accelerates and radically simplifies the process of reporting the data breach.

Security teams should not have to confront disclosure processes on their own. Attacks happen fast, and their aftermaths are messy – retrospective investigation of lost data can be a futile effort with traditional approaches. With Darktrace, security teams can meet disruptive and sudden attacks with precise and nimble means of uncovering data, as well as detection and mitigation of risk. And, should the need arise, rapid and accurate reporting of events is laid out on a silver platter by the AI.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Sally Kenyon Grant
VP, Darktrace Federal

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI