Blog
/
Network
/
September 6, 2023

The Rise of MaaS & Lumma Info Stealer

Discover the rise of the Lumma info stealer and its implications for cybersecurity. Learn how this malware targets sensitive information.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
picture of someone doing a authentication password login Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2023

What are Malware-as-a-Service information stealers?

The Malware-as-a-Service (MaaS) model continues provide would-be threat actors with an inexpensive and relatively straightforward way to carry out sophisticated cyber attacks and achieve their nefarious goals. One common type of MaaS are information stealers that specialize in gathering and exfiltrating sensitive data, such as login credentials and bank details, from affected devices, potentially resulting in significant financial losses for organizations and individuals alike.

What is Lumma Information Stealer?

One such information stealer, dubbed “Lumma”, has been advertised and sold on numerous dark web forums since 2022. Lumma stealer primarily targets cryptocurrency wallets, browser extensions and two-factor authentication (2FA), before ultimately stealing sensitive information from compromised machines. The number of sightings of this malware being distributed on dark web forums is on the rise [1], and thus far, more than a dozen command-and-control (C2) servers have been observed in the wild.

Between January and April 2023, Darktrace observed and investigated multiple instances of Lumma stealer activity across the customer base. Thanks to its anomaly-based approach to threat detection, Darktrace / NETWORK is able to successfully identify and provide visibility over activity associated with such info-stealers, from C2 activity through to the eventual exfiltration of sensitive data.

Lumma Stealer Background

Lumma stealer, previously known as LummaC2, is a subscription-based information stealer that has been observed in the wild since 2022.

It is believed to have been developed by the threat actor “Shamel”, under the the alias “Lumma”. The info-stealer has been advertised on dark web forums and also a channel on the Telegram messenger server, which boasts over a thousand subscribers as of May 2023 [2], and is also available on Lumma’s official seller page for as little as USD 250 (Figure 1).

LummaC2’s official seller website
Figure 1: LummaC2’s official seller website [3].

Research on the Russian Market selling stolen credentials has shown that Lumma stealer has been an emerging since early 2023, and joins the list of info stealers that have been on the rise, including Vidar and Racoon [1].

Similar to other info-stealers, Lumma is able to obtain system and installed program data from compromised devices, alongside sensitive information such as cookies, usernames and passwords, credit card numbers, connection history, and cryptocurrency wallet data.

Between January and April 2023, Darktrace has observed Lumma malware activity across multiple customer deployments mostly in the EMEA region, but also in the US. This included data exfiltration to external endpoints related to the Lumma malware. It is likely that this activity resulted from the download of trojanized software files or users falling victim to malicious emails containing Lumma payloads.

Lumma Attack Details and Darktrace Coverage

Typically, Lumma has been distributed disguised as cracked or fake popular software like VLC or ChatGPT. Recently though, threat actors have also delivered the malware through emails containing payloads in the form of attachments or links impersonating well-known companies. For example, in February 2023, a streamer in South Korea was targeted with a spear-phishing email in which the sender impersonated the video game company Bandai Namco [4].

Lumma is known to target Windows operating systems from Windows 7 to 11 and at least 10 different browsers including Google Chrome, Microsoft Edge, and Mozilla Firefox [5]. It has also been observed targeting crypto wallets like Binance and Ethereum, as well as crypto wallet and 2FA browser extensions like Metamask and Authenticator respectively [6]. Data from applications such as AnyDesk or KeePass can also be exfiltrated by the malware [7].

An infection with Lumma can lead to the user's information being abused for fraud, for example, using stolen credentials to hijack bank accounts, which in turn could result in significant financial losses.

Once the targeted data is obtained, it is exfiltrated to a C2 server, as Darktrace has observed on multiple customer environments affected with Lumma stealer. Darktrace identified multiple infected devices exfiltrating data via HTTP POST requests to known Lumma C2 servers. During these connections, Darktrace commonly observed the URI “/c2sock” and the user agent “TeslaBrowser/5.5”.

In one instance, Darktrace detected a device using the “TeslaBrowser/5.5” user agent, which it recognized as a new user agent for this device, whilst making a HTTP post request to an unusual IP address, 82.117.255[.]127 (Figure 3). Darktrace’s Self-Learning AI understood that this represented a deviation from expected behavior for this device and brought it to the attention of the customer’s security team.

Device Event Log on the Darktrace Threat Visualizer showing activity from a device infected with Lumma stealer and the models it breached.
Figure 2: Device Event Log on the Darktrace Threat Visualizer showing activity from a device infected with Lumma stealer and the models it breached.

Further investigation revealed that accessing the IP address using a web browser and changing the the URI to “/login”, would take a user to a Russian Lumma control panel access page (Figure 4)

 One of Lumma stealer’s C2 servers accessed via a web browser in a secured environment.
Figure 3: One of Lumma stealer’s C2 servers accessed via a web browser in a secured environment.

A deep dive into the packet captures (PCAP) of the HTTP POST requests taken from one device also confirmed that browser data, including Google Chrome history files, system information in the form of a System.txt file, and other program data such as AnyDesk configuration files were being exfiltrated from the customer’s network(Figures 5 and 6).

HTTP objects observed during Lumma Stealer POSTing of data to another one of its  C2 servers.
Figure 4: HTTP objects observed during Lumma Stealer POSTing of data to another one of its  C2 servers.
PCAP of HTTP stream showing the different types of data being exfiltrated.
Figure 5: PCAP of HTTP stream showing the different types of data being exfiltrated.

Additionally, on one particular device, Darktrace observed malicious external connections related to other malware strains, like Laplas Clipper, Raccoon Stealer, Vidar, RedLine info-stealers and trojans, around the same time as the Lumma C2 connections. These info-stealers are commonly marketed as MaaS and can be bought and used for a relatively inexpensive price by even the most inexperienced threat actors. It is also likely that the developers of these info-stealers have been making efforts to integrate their strains into the activities of traffer teams [8], organized cybercrime groups who specialize in credential theft with the use of info-stealers.

Conclusion

Mirroring the general emergence and rise of information stealers across the cyber threat landscape, Lumma stealer continues to represent a significant concern to orgaizations and individuals alike.

Moreover, as yet another example of MaaS, Lumma is readily available for threat actors to launch their attacks, regardless of their level of expertise, meaning the number of incidents is only likely to rise. As such, it is essential for organizations to have security measures in place that are able to recognize unusual behavior that may be indicative of an info-stealer compromise, while not relying on a static list of indicators of compromise (IoCs).

Darktrace's anomaly-based detection enabled it to uncover the presence of Lumma across multiple customer environments across different regions and industries. From the detection of unusual connections to C2 infrastructure to the ultimate exfiltration of customer data, Darktrace provided affected customers full visibility over Lumma infections, allowing them to identify compromised devices and take action to prevent further data loss and reduce the risk of incurring significant financial losses.

[related-resource]

Appendices

Credit to: Emily Megan Lim, Cyber Security Analyst, Signe Zaharka, Senior Cyber Security Analyst

Darktrace DETECT Models

·      Anomalous Connection / New User Agent to IP Without Hostname  

·      Device / New User Agent and New IP

·      Device / New User Agent

·      Anomalous Connection / Posting HTTP to IP Without Hostname

Cyber AI Analyst Incidents

·      Possible HTTP Command and Control

·      Possible HTTP Command and Control to Multiple Endpoints

List of IoCs

IoC - Type - Description + Confidence

144.76.173[.]247

IP address

Lumma C2 Infrastructure

45.9.74[.]78

IP address

Lumma C2 Infrastructure

77.73.134[.]68

IP address

Lumma C2 Infrastructure

82.117.255[.]127

IP address

Lumma C2 Infrastructure

82.117.255[.]80

IP address

Lumma C2 Infrastructure

82.118.23[.]50

IP address

Lumma C2 Infrastructure

/c2sock

URI

Lumma C2 POST Request

TeslaBrowser/5.5

User agent

Lumma C2 POST Request

MITRE ATT&CK Mapping

Tactic: Command and Control -

Technique: T1071.001 – Web Protocols

References

[1] https://www.kelacyber.com/wp-content/uploads/2023/05/KELA_Research_Infostealers_2023_full-report.pdf

[2] https://www.bleepingcomputer.com/news/security/the-new-info-stealing-malware-operations-to-watch-out-for/

[3] https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/

[4] https://medium.com/s2wblog/lumma-stealer-targets-youtubers-via-spear-phishing-email-ade740d486f7

[5] https://socradar.io/malware-analysis-lummac2-stealer/

[6] https://outpost24.com/blog/everything-you-need-to-know-lummac2-stealer

[7] https://asec.ahnlab.com/en/50594/

[8] https://blog.sekoia.io/bluefox-information-stealer-traffer-maas/

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI