Blog
/
Network
/
September 6, 2023

The Rise of MaaS & Lumma Info Stealer

Discover the rise of the Lumma info stealer and its implications for cybersecurity. Learn how this malware targets sensitive information.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
picture of someone doing a authentication password login Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2023

What are Malware-as-a-Service information stealers?

The Malware-as-a-Service (MaaS) model continues provide would-be threat actors with an inexpensive and relatively straightforward way to carry out sophisticated cyber attacks and achieve their nefarious goals. One common type of MaaS are information stealers that specialize in gathering and exfiltrating sensitive data, such as login credentials and bank details, from affected devices, potentially resulting in significant financial losses for organizations and individuals alike.

What is Lumma Information Stealer?

One such information stealer, dubbed “Lumma”, has been advertised and sold on numerous dark web forums since 2022. Lumma stealer primarily targets cryptocurrency wallets, browser extensions and two-factor authentication (2FA), before ultimately stealing sensitive information from compromised machines. The number of sightings of this malware being distributed on dark web forums is on the rise [1], and thus far, more than a dozen command-and-control (C2) servers have been observed in the wild.

Between January and April 2023, Darktrace observed and investigated multiple instances of Lumma stealer activity across the customer base. Thanks to its anomaly-based approach to threat detection, Darktrace / NETWORK is able to successfully identify and provide visibility over activity associated with such info-stealers, from C2 activity through to the eventual exfiltration of sensitive data.

Lumma Stealer Background

Lumma stealer, previously known as LummaC2, is a subscription-based information stealer that has been observed in the wild since 2022.

It is believed to have been developed by the threat actor “Shamel”, under the the alias “Lumma”. The info-stealer has been advertised on dark web forums and also a channel on the Telegram messenger server, which boasts over a thousand subscribers as of May 2023 [2], and is also available on Lumma’s official seller page for as little as USD 250 (Figure 1).

LummaC2’s official seller website
Figure 1: LummaC2’s official seller website [3].

Research on the Russian Market selling stolen credentials has shown that Lumma stealer has been an emerging since early 2023, and joins the list of info stealers that have been on the rise, including Vidar and Racoon [1].

Similar to other info-stealers, Lumma is able to obtain system and installed program data from compromised devices, alongside sensitive information such as cookies, usernames and passwords, credit card numbers, connection history, and cryptocurrency wallet data.

Between January and April 2023, Darktrace has observed Lumma malware activity across multiple customer deployments mostly in the EMEA region, but also in the US. This included data exfiltration to external endpoints related to the Lumma malware. It is likely that this activity resulted from the download of trojanized software files or users falling victim to malicious emails containing Lumma payloads.

Lumma Attack Details and Darktrace Coverage

Typically, Lumma has been distributed disguised as cracked or fake popular software like VLC or ChatGPT. Recently though, threat actors have also delivered the malware through emails containing payloads in the form of attachments or links impersonating well-known companies. For example, in February 2023, a streamer in South Korea was targeted with a spear-phishing email in which the sender impersonated the video game company Bandai Namco [4].

Lumma is known to target Windows operating systems from Windows 7 to 11 and at least 10 different browsers including Google Chrome, Microsoft Edge, and Mozilla Firefox [5]. It has also been observed targeting crypto wallets like Binance and Ethereum, as well as crypto wallet and 2FA browser extensions like Metamask and Authenticator respectively [6]. Data from applications such as AnyDesk or KeePass can also be exfiltrated by the malware [7].

An infection with Lumma can lead to the user's information being abused for fraud, for example, using stolen credentials to hijack bank accounts, which in turn could result in significant financial losses.

Once the targeted data is obtained, it is exfiltrated to a C2 server, as Darktrace has observed on multiple customer environments affected with Lumma stealer. Darktrace identified multiple infected devices exfiltrating data via HTTP POST requests to known Lumma C2 servers. During these connections, Darktrace commonly observed the URI “/c2sock” and the user agent “TeslaBrowser/5.5”.

In one instance, Darktrace detected a device using the “TeslaBrowser/5.5” user agent, which it recognized as a new user agent for this device, whilst making a HTTP post request to an unusual IP address, 82.117.255[.]127 (Figure 3). Darktrace’s Self-Learning AI understood that this represented a deviation from expected behavior for this device and brought it to the attention of the customer’s security team.

Device Event Log on the Darktrace Threat Visualizer showing activity from a device infected with Lumma stealer and the models it breached.
Figure 2: Device Event Log on the Darktrace Threat Visualizer showing activity from a device infected with Lumma stealer and the models it breached.

Further investigation revealed that accessing the IP address using a web browser and changing the the URI to “/login”, would take a user to a Russian Lumma control panel access page (Figure 4)

 One of Lumma stealer’s C2 servers accessed via a web browser in a secured environment.
Figure 3: One of Lumma stealer’s C2 servers accessed via a web browser in a secured environment.

A deep dive into the packet captures (PCAP) of the HTTP POST requests taken from one device also confirmed that browser data, including Google Chrome history files, system information in the form of a System.txt file, and other program data such as AnyDesk configuration files were being exfiltrated from the customer’s network(Figures 5 and 6).

HTTP objects observed during Lumma Stealer POSTing of data to another one of its  C2 servers.
Figure 4: HTTP objects observed during Lumma Stealer POSTing of data to another one of its  C2 servers.
PCAP of HTTP stream showing the different types of data being exfiltrated.
Figure 5: PCAP of HTTP stream showing the different types of data being exfiltrated.

Additionally, on one particular device, Darktrace observed malicious external connections related to other malware strains, like Laplas Clipper, Raccoon Stealer, Vidar, RedLine info-stealers and trojans, around the same time as the Lumma C2 connections. These info-stealers are commonly marketed as MaaS and can be bought and used for a relatively inexpensive price by even the most inexperienced threat actors. It is also likely that the developers of these info-stealers have been making efforts to integrate their strains into the activities of traffer teams [8], organized cybercrime groups who specialize in credential theft with the use of info-stealers.

Conclusion

Mirroring the general emergence and rise of information stealers across the cyber threat landscape, Lumma stealer continues to represent a significant concern to orgaizations and individuals alike.

Moreover, as yet another example of MaaS, Lumma is readily available for threat actors to launch their attacks, regardless of their level of expertise, meaning the number of incidents is only likely to rise. As such, it is essential for organizations to have security measures in place that are able to recognize unusual behavior that may be indicative of an info-stealer compromise, while not relying on a static list of indicators of compromise (IoCs).

Darktrace's anomaly-based detection enabled it to uncover the presence of Lumma across multiple customer environments across different regions and industries. From the detection of unusual connections to C2 infrastructure to the ultimate exfiltration of customer data, Darktrace provided affected customers full visibility over Lumma infections, allowing them to identify compromised devices and take action to prevent further data loss and reduce the risk of incurring significant financial losses.

[related-resource]

Appendices

Credit to: Emily Megan Lim, Cyber Security Analyst, Signe Zaharka, Senior Cyber Security Analyst

Darktrace DETECT Models

·      Anomalous Connection / New User Agent to IP Without Hostname  

·      Device / New User Agent and New IP

·      Device / New User Agent

·      Anomalous Connection / Posting HTTP to IP Without Hostname

Cyber AI Analyst Incidents

·      Possible HTTP Command and Control

·      Possible HTTP Command and Control to Multiple Endpoints

List of IoCs

IoC - Type - Description + Confidence

144.76.173[.]247

IP address

Lumma C2 Infrastructure

45.9.74[.]78

IP address

Lumma C2 Infrastructure

77.73.134[.]68

IP address

Lumma C2 Infrastructure

82.117.255[.]127

IP address

Lumma C2 Infrastructure

82.117.255[.]80

IP address

Lumma C2 Infrastructure

82.118.23[.]50

IP address

Lumma C2 Infrastructure

/c2sock

URI

Lumma C2 POST Request

TeslaBrowser/5.5

User agent

Lumma C2 POST Request

MITRE ATT&CK Mapping

Tactic: Command and Control -

Technique: T1071.001 – Web Protocols

References

[1] https://www.kelacyber.com/wp-content/uploads/2023/05/KELA_Research_Infostealers_2023_full-report.pdf

[2] https://www.bleepingcomputer.com/news/security/the-new-info-stealing-malware-operations-to-watch-out-for/

[3] https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/

[4] https://medium.com/s2wblog/lumma-stealer-targets-youtubers-via-spear-phishing-email-ade740d486f7

[5] https://socradar.io/malware-analysis-lummac2-stealer/

[6] https://outpost24.com/blog/everything-you-need-to-know-lummac2-stealer

[7] https://asec.ahnlab.com/en/50594/

[8] https://blog.sekoia.io/bluefox-information-stealer-traffer-maas/

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

August 8, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI