Blog
/
Network
/
September 6, 2023

The Rise of MaaS & Lumma Info Stealer

Discover the rise of the Lumma info stealer and its implications for cybersecurity. Learn how this malware targets sensitive information.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
picture of someone doing a authentication password login Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2023

What are Malware-as-a-Service information stealers?

The Malware-as-a-Service (MaaS) model continues provide would-be threat actors with an inexpensive and relatively straightforward way to carry out sophisticated cyber attacks and achieve their nefarious goals. One common type of MaaS are information stealers that specialize in gathering and exfiltrating sensitive data, such as login credentials and bank details, from affected devices, potentially resulting in significant financial losses for organizations and individuals alike.

What is Lumma Information Stealer?

One such information stealer, dubbed “Lumma”, has been advertised and sold on numerous dark web forums since 2022. Lumma stealer primarily targets cryptocurrency wallets, browser extensions and two-factor authentication (2FA), before ultimately stealing sensitive information from compromised machines. The number of sightings of this malware being distributed on dark web forums is on the rise [1], and thus far, more than a dozen command-and-control (C2) servers have been observed in the wild.

Between January and April 2023, Darktrace observed and investigated multiple instances of Lumma stealer activity across the customer base. Thanks to its anomaly-based approach to threat detection, Darktrace is able to successfully identify and provide visibility over activity associated with such info-stealers, from C2 activity through to the eventual exfiltration of sensitive data.

Lumma Stealer Background

Lumma stealer, previously known as LummaC2, is a subscription-based information stealer that has been observed in the wild since 2022. It is believed to have been developed by the threat actor “Shamel”, under the the alias “Lumma”. The info-stealer has been advertised on dark web forums and also a channel on the Telegram messenger server, which boasts over a thousand subscribers as of May 2023 [2], and is also available on Lumma’s official seller page for as little as USD 250 (Figure 1).

Figure 1: LummaC2’s official seller website [3].

Research on the Russian Market selling stolen credentials has shown that Lumma stealer has been an emerging since early 2023, and joins the list of info stealers that have been on the rise, including Vidar and Racoon [1].

Similar to other info-stealers, Lumma is able to obtain system and installed program data from compromised devices, alongside sensitive information such as cookies, usernames and passwords, credit card numbers, connection history, and cryptocurrency wallet data.

Between January and April 2023, Darktrace has observed Lumma malware activity across multiple customer deployments mostly in the EMEA region, but also in the US. This included data exfiltration to external endpoints related to the Lumma malware. It is likely that this activity resulted from the download of trojanized software files or users falling victim to malicious emails containing Lumma payloads.

Lumma Attack Details and Darktrace Coverage

Typically, Lumma has been distributed disguised as cracked or fake popular software like VLC or ChatGPT. Recently though, threat actors have also delivered the malware through emails containing payloads in the form of attachments or links impersonating well-known companies. For example, in February 2023, a streamer in South Korea was targeted with a spear-phishing email in which the sender impersonated the video game company Bandai Namco [4].

Lumma is known to target Windows operating systems from Windows 7 to 11 and at least 10 different browsers including Google Chrome, Microsoft Edge, and Mozilla Firefox [5]. It has also been observed targeting crypto wallets like Binance and Ethereum, as well as crypto wallet and 2FA browser extensions like Metamask and Authenticator respectively [6]. Data from applications such as AnyDesk or KeePass can also be exfiltrated by the malware [7].

An infection with Lumma can lead to the user's information being abused for fraud, for example, using stolen credentials to hijack bank accounts, which in turn could result in significant financial losses.

Once the targeted data is obtained, it is exfiltrated to a C2 server, as Darktrace has observed on multiple customer environments affected with Lumma stealer. Darktrace identified multiple infected devices exfiltrating data via HTTP POST requests to known Lumma C2 servers. During these connections, DETECT commonly observed the URI “/c2sock” and the user agent “TeslaBrowser/5.5”.

In one instance, Darktrace detected a device using the “TeslaBrowser/5.5” user agent, which it recognized as a new user agent for this device, whilst making a HTTP post request to an unusual IP address, 82.117.255[.]127 (Figure 3). Darktrace’s Self-Learning AI understood that this represented a deviation from expected behavior for this device and brought it to the attention of the customer’s security team.

Figure 2: Device Event Log on the Darktrace DETECT Threat Visualizer showing activity from a device infected with Lumma stealer and the DETECT models it breached.

Further investigation revealed that accessing the IP address using a web browser and changing the the URI to “/login”, would take a user to a Russian Lumma control panel access page (Figure 4)

Figure 3: One of Lumma stealer’s C2 servers accessed via a web browser in a secured environment.

A deep dive into the packet captures (PCAP) of the HTTP POST requests taken from one device also confirmed that browser data, including Google Chrome history files, system information in the form of a System.txt file, and other program data such as AnyDesk configuration files were being exfiltrated from the customer’s network(Figures 5 and 6).

Figure 4: HTTP objects observed during Lumma Stealer POSTing of data to another one of its  C2 servers.
Figure 5: PCAP of HTTP stream showing the different types of data being exfiltrated.

Additionally, on one particular device, Darktrace observed malicious external connections related to other malware strains, like Laplas Clipper, Raccoon Stealer, Vidar, RedLine info-stealers and trojans, around the same time as the Lumma C2 connections. These info-stealers are commonly marketed as MaaS and can be bought and used for a relatively inexpensive price by even the most inexperienced threat actors. It is also likely that the developers of these info-stealers have been making efforts to integrate their strains into the activities of traffer teams [8], organized cybercrime groups who specialize in credential theft with the use of info-stealers.

Conclusion

Mirroring the general emergence and rise of information stealers across the cyber threat landscape, Lumma stealer continues to represent a significant concern to orgaizations and individuals alike.

Moreover, as yet another example of MaaS, Lumma is readily available for threat actors to launch their attacks, regardless of their level of expertise, meaning the number of incidents is only likely to rise. As such, it is essential for organizations to have security measures in place that are able to recognize unusual behavior that may be indicactive of an info-stealer compromise, while not relying on a static list of indicators of compromise (IoCs).

Darktrace's anomaly-based detection enabled it to uncover the presence of Lumma across multiple customer environments across different regions and industries. From the detection of unusual connections to C2 infrastructure to the ultimate exfiltration of customer data, Darktrace provided affected customers full visibility over Lumma infections, allowing them to identify compromised devices and take action to prevent further data loss and reduce the risk of incurring significant financial losses.

Credit to: Emily Megan Lim, Cyber Security Analyst, Signe Zaharka, Senior Cyber Security Analyst

Appendices

Darktrace DETECT Models

·      Anomalous Connection / New User Agent to IP Without Hostname  

·      Device / New User Agent and New IP

·      Device / New User Agent

·      Anomalous Connection / Posting HTTP to IP Without Hostname

Cyber AI Analyst Incidents

·      Possible HTTP Command and Control

·      Possible HTTP Command and Control to Multiple Endpoints

List of IoCs

IoC - Type - Description + Confidence

144.76.173[.]247

IP address

Lumma C2 Infrastructure

45.9.74[.]78

IP address

Lumma C2 Infrastructure

77.73.134[.]68

IP address

Lumma C2 Infrastructure

82.117.255[.]127

IP address

Lumma C2 Infrastructure

82.117.255[.]80

IP address

Lumma C2 Infrastructure

82.118.23[.]50

IP address

Lumma C2 Infrastructure

/c2sock

URI

Lumma C2 POST Request

TeslaBrowser/5.5

User agent

Lumma C2 POST Request

MITRE ATT&CK Mapping

Tactic: Command and Control -

Technique: T1071.001 – Web Protocols

References

[1] https://www.kelacyber.com/wp-content/uploads/2023/05/KELA_Research_Infostealers_2023_full-report.pdf

[2] https://www.bleepingcomputer.com/news/security/the-new-info-stealing-malware-operations-to-watch-out-for/

[3] https://blog.cyble.com/2023/01/06/lummac2-stealer-a-potent-threat-to-crypto-users/

[4] https://medium.com/s2wblog/lumma-stealer-targets-youtubers-via-spear-phishing-email-ade740d486f7

[5] https://socradar.io/malware-analysis-lummac2-stealer/

[6] https://outpost24.com/blog/everything-you-need-to-know-lummac2-stealer

[7] https://asec.ahnlab.com/en/50594/

[8] https://blog.sekoia.io/bluefox-information-stealer-traffer-maas/

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI