Blog
/
Network
/
January 30, 2023

How Vidar Malware Spreads via Malvertising on Google

Discover how Vidar info stealer malware is distributed through malvertising on Google and the risks it poses to users and organizations.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In recent weeks, security researchers and cyber security vendors have noted an increase in malvertising campaigns on Google, aimed at infiltrating info-stealer malware into the systems of unsuspecting victims, as reported in sources [1] [2]. It has been observed that when individuals search for popular tools such as Notepad++, Zoom, AnyDesk, Foxit, Photoshop, and others on Google, they may encounter ads that redirect them to malicious sites. This report aims to provide a high-level analysis of one such campaign, specifically focusing on the delivery of the Vidar Info-stealer malware.

Campaign Details

On the 25th of January 2023, Darktrace researchers observed that the advertisement depicted in Figure 1 was being displayed on Google when searching for the term "Notepad++" from within the United States.

Figure 1: Google Ad shown when searching for Notepad++

As can be seen in Figure 2, the advertisement in question had no visible information regarding its publisher.

Figure 2: Advertisement information

Clicking on the advertisement would direct potential victims to the website notepadplusplus.site, which had been registered on the 4th of January and is hosted on IP address 37[.]140[.]192[.]11. Upon selecting the desired version of the software, a download button is presented to the visitor.

Figure 3: Malicious site with fake Notepad++
Figure 4: Malicious site with fake Notepad++

When clicking on Download, regardless of the version selected, the traffic is then redirected to hxxps://download-notepad-plus-plus[.]duckdns[.]org/, and a .zip file with name “npp.Installer.x64.zip” is downloaded.

Figure 5: Traffic redirection

Upon extraction, the file "npp.Installer.x64.exe" has a file size of 684.1 megabytes. The significant size is attributed to the inclusion of an excessive number of null bytes, which serve to prevent the file from being scanned by some Antivirus and uploaded to malware analysis platforms such as VirusTotal, which has a file size limit of 650 megabytes.

Figure 6: npp.Installer.x64.zip

Initially, padding was incorporated at the end of the executable, enabling individuals to remove it while maintaining a fully functional file. However, in the sample analysed in this report, padding was inserted into the binary's central region. This method renders the removal of padding more challenging, as simply deleting the zeroes would compromise the integrity of the file and impede its functionality during dynamic analysis.

Figure 7: Beginning of null bytes padding

Figure 8: End of null bytes padding

After execution, the malware promptly establishes a connection to a Telegram channel to acquire its command and control (C2) address, specifically hxxp://95[.]217[.]16[.]127. If Telegram is not available, the malware will then attempt to connect to a profile on video game platform Steam, in which case the C2 address was hxxp://157[.]90.148[.]112/ at the time of initial analysis and hxxp://116[.]203[.]6[.]107 later. It then proceeds to check-in and obtain its configuration file and subsequently downloads get.zip, an archive containing several legitimate DLL libraries, which are utilized to extract information and saved passwords from various applications and browsers. Through traffic analysis, the method by which the malware obtains its Command and Control (C2) location, and analysis of the configuration obtained, it can be assessed with high confidence that the malware in question is the info-stealer known as Vidar. Vidar has been extensively covered by various cybersecurity organizations. Further information regarding this info-stealer and its origins can be found here[3].

Figure 9: Telegram traffic
Figure 10: Telegram channel containing the location of Vidar’s C2 address
Figure 11: Steam profile containing the location of Vidar’s C2 address
Figure 12: Vidar C2 traffic
Figure 13: Vidar configuration obtained from the C2
Figure 14: Libraries downloaded by Vidar

Campaign ID 827

The domain download-notepad-plus-plus.duckdns.org, from which the malware is distributed, resolves to the IP address 185[.]163[.]204[.]10. Using passive DNS, it has been determined that multiple domains also resolve to this IP address. This information suggests that the threat group responsible for this campaign is also utilizing advertising to target individuals searching for specific applications besides Notepad++, including:

  • OBS Studio
  • Davinci Resolve
  • Sqlite
  • Rufus
  • Krita

Furthermore, it has been observed that all the malware samples obtained in this investigation connect to the same Telegram channel, utilize the same two Command and Control IP addresses, and share the same campaign ID of "827".

Conclusion 

The recent proliferation of malvertising campaigns, which are employed by cyber-criminals to distribute malware, has become a significant cause for concern. Unlike more traditional infection vectors, such as email, malvertising is harder to protect against. Furthermore, the use of padding techniques to inflate the size of malware payloads can make detection and analysis more challenging.

To mitigate the risk of falling victim to such attacks, it is recommended to exercise caution when interacting with online advertisements. Specifically, it is advisable to avoid clicking on any advertisements while searching for free software on search engines and to instead download programs directly from official sources. This approach can reduce the likelihood of inadvertently downloading malware from untrusted sources. 

Another effective measure to counteract the threat of malicious ads is the utilization of ad-blocker software. The implementation of an ad-blocker can provide an additional layer of protection against malvertising campaigns and enhance overall cybersecurity.

Appendices

Indicators of Compromise

Filename        npp.Installer.x64.zip

SHA256 Hash  7DFD1D4FE925F802513FEA5556DE53706D9D8172BFA207D0F8AAB3CEF46424E8

Filename         npp.Installer.x64.exe

SHA256 Hash  368008b450397c837f0b9c260093935c5cef56646e16a375ba7c47fea5562bfd

Filename         rufus-3.21.zip

SHA256 Hash  75db4f8187abf49376a6ff3de0163b2d708d72948ea4b3d5645b86a0e41af084

Filename         rufus-3.21.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         DaVinci_Resolve_18.1.2_Windows.zip

SHA256 Hash  73f00e3b3ab01f4d5de42790f9ab12474114abe10cd5104f623aef9029c15b1e

Filename         DaVinci_Resolve_18.1.2_Windows.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         krita-x64-5.1.5-setup.zip

SHA256 Hash  85eb4b0e3922312d88ca046d89909fba078943aea3b469d82655a253e0d3ac67

Filename         krita-x64-5.1.5-setup.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

URL     hxxp://95[.]217[.]16[.]127/827  
URL     hxxp://95[.]217[.]16[.]127/get[.]zip  
URL     hxxp://95[.]217[.]16[.]127/  
URL     hxxp://157[.]90[.]148[.]112/827  
URL     hxxp://157[.]90[.]148[.]112/  
URL     hxxp://157[.]90[.]148[.]112/get[.]zip  
URL     hxxp://116[.]203[.]6[.]107/  
Domain  notepadplusplus[.]site  
Domain  download-notepad-plus-plus[.]duckdns[.]org  
Domain  download-obsstudio[.]duckdns[.]org  
Domain  dowbload-notepadd[.]duckdns[.]org  
Domain  dowbload-notepad1[.]duckdns[.]org  
Domain  download-davinci-resolve[.]duckdns[.]org  
Domain  download-davinci[.]duckdns[.]org  
Domain  download-sqlite[.]duckdns[.]org  
Domain  download-davinci17[.]duckdns[.]org  
Domain  download-rufus[.]duckdns[.]org  
Domain  download-kritapaint[.]duckdns[.]org  
IP Address    37[.]140[.]192[.]11  
IP Address     185[.]163[.]204[.]10  
IP Address     95[.]217[.]16[.]127  
IP Address    157[.]90[.]148[.]112  
IP Address    116[.]203[.]6[.]107  
URL     hxxps://t[.]me/litlebey  
URL     hxxps://steamcommunity[.]com/profiles/76561199472399815

References

[1] https://www.bleepingcomputer.com/news/security/hackers-push-malware-via-google-search-ads-for-vlc-7-zip-ccleaner/

[2] https://www.bleepingcomputer.com/news/security/ransomware-access-brokers-use-google-ads-to-breach-your-network/

[3] https://www.team-cymru.com/post/darth-vidar-the-dark-side-of-evolving-threat-infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher

More in this series

No items found.

Blog

/

Network

/

December 4, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Dylan Hinz
Cyber Analyst

Blog

/

Email

/

December 4, 2025

How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations

Default blog imageDefault blog image

A new era of reputation-aware, unified email security

Darktrace / EMAIL is redefining email defense with new innovations that close email security silos and empower SOC teams to stop multi-stage attacks – without disrupting business operations.  

By extending visibility across interconnected domains, Darktrace catches the 17% of threats that leading SEGs miss, including multi-stage attacks like email bombing and cloud platform abuse. Its label-free behavioral DLP protects sensitive data without reliance on manual rules or classification, while DMARC strengthens brand trust and authenticity. With native integrations for Microsoft Defender and Security Copilot, SOC teams can now investigate and respond faster, reducing risk and maintaining operational continuity across the enterprise.

Summary of what’s new:

  • Cross-domain AI-native detection unifying email, identity, and SaaS
  • Label-free behavioral DLP for effortless data protection
  • Microsoft Defender and Security Copilot integrations for streamlined investigation and response

Why email security must evolve

Today’s attacks don’t stop at the inbox. They move across domains – email to identity, SaaS, and network – exploiting the blind spots between disconnected tools. Yet most email security solutions still operate in isolation, unable to see or respond beyond the message itself.

In 2024, Darktrace detected over 30 million phishing attempts: 38% targeting high-value individuals and almost a third using novel social engineering, including AI-generated text. Generative AI is amplifying the realism and scale of social engineering, while customers face a wave of new techniques like email bombing, where attackers flood inboxes to distract or manipulate users, and polymorphic malware, which continuously evolves to evade static defenses.

Meanwhile, defenders are exposed to traditional DLP tools that create operational drag with high false positives and rigid policies. Accidental insider breachers remain a major risk to organizations: 6% of all data breaches are caused by misdelivery, and 95% of those incidents involve personal data.

Tool sprawl compounds the issue. The average enterprise manages around 75 security products, and 69% report operational strain as a result. This complexity is counterproductive – and with legacy SEGs failing to adapt to detect threats that exploit human behavior, analysts are left juggling an unwieldy patchwork of fragmented defenses.

The bottom line? Siloed email defenses can’t keep pace with today’s AI-driven, cross domain attacks.

Beyond detection: AI built for modern threats

Darktrace / EMAIL is uniquely designed to catch the threats SEGs miss, powered by Self-Learning AI. It learns the communication patterns of every user – correlating behavioral signals from email, identity, and SaaS – to identify the subtle, context-driven deviations that define advanced social engineering and supply chain attacks.

Unlike tools that rely on static rules or historical attack data, Darktrace’s AI assumes a zero trust posture, treating every interaction as a potential risk. It detects novel threats in real time, including those that exploit trusted relationships or mimic legitimate business processes. And because Darktrace’s technology is natively unified, it delivers precise, coordinated responses that neutralize threats in real time.

Powerful innovations to Darktrace / EMAIL

Improved, multi-domain threat detection and response

With this update, Darktrace reveals multi-domain detection linking behavioral signals across email, identity, and SaaS to uncover advanced attacks. Darktrace leverages its existing agentic platform to understand behavioral deviations in any communication channel and take precise actions regardless of the domain.  

This innovation enables customers to:

  • Correlate behavioral signals across domains to expose cross-channel threats and enable coordinated response
  • Link email and identity intelligence to neutralize multi-stage attacks, including advanced email bombing campaigns

Detection accuracy is further strengthened through layering with traditional threat intelligence:

  • Integrated antivirus verdicts improve detection efficacy by adding traditional file scanning
  • Structured threat intelligence (STIX/TAXII) enriches alerts with global context for faster triage and prioritization

Expanded ecosystem visibility also includes:

  • Salesforce integration, enabling automatic action on potentially malicious tickets auto-created from emails – accelerating threat response and reducing manual burden

Advancements in label-free DLP

Darktrace is delivering the industry’s first label-free data loss prevention (DLP) solution powered by a proprietary domain specific language model (DSLM).  

This update expands DLP to protect against both secrets and personally identifiable information (PII), safeguarding sensitive data without relying on status rules or manual classification. The DSLM is tuned for email/DLP semantics so it understands entities, PII patterns, and message context quickly enough to enforce at send time.

Key enhancements include:

  • Behaviorally enhanced PII detection that automatically defines over 35+ new categories, including personal, financial, and health data  
  • Added detail to DLP alerts in the UI, showing exactly how and when DLP policies were applied
  • Enhanced Cyber AI Analyst narratives to explain detection logic, making it easier to investigate and escalate incidents

And for further confidence in outbound mail, discover new updates to DMARC, with support for BIMI logo verification, automatic detection of both MTA-STS and TLS records, and data exports for deeper analysis and reporting. Accessible for all organizations, available now on the Azure marketplace.

Streamlined SOC workflows, with Microsoft-native integrations

This update introduces new integrations that simplify SOC operations, unify visibility, and accelerate response. By embedding directly into the Microsoft ecosystem – with Defender and Security Copilot – analysts gain instant access to correlated insights without switching consoles.

New innovations include:

  • Unified quarantine management with Microsoft Defender, centralizing containment within the native Microsoft interface and eliminating console hopping
  • Ability to surface threat insights directly in Copilot via the Darktrace Email Analysis Agent, eliminating data hunting and simplifying investigations
  • Automatic ticket creation in JIRA when users report suspicious messages
  • Sandbox analysis integration, enabling payload inspection in isolated environments directly from the Darktrace UI

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

  1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.
  2. Redefining NDR with industry-first autonomous threat investigation from network to endpoint  
  3. Innovations to our suite of Exposure Management & Attack Surface Management tools

As attackers exploit gaps between tools, the Darktrace ActiveAI Security Platform delivers unified detection, automated investigation, and autonomous response across cloud, endpoint, email, network, and OT. With full-stack visibility and AI-native workflows, Darktrace empowers security teams to detect, understand, and stop novel threats before they escalate.

Join our Live Launch Event

When? December 9, 2025

What will be covered? Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI