Blog
/
Network
/
January 30, 2023

How Vidar Malware Spreads via Malvertising on Google

Discover how Vidar info stealer malware is distributed through malvertising on Google and the risks it poses to users and organizations.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In recent weeks, security researchers and cyber security vendors have noted an increase in malvertising campaigns on Google, aimed at infiltrating info-stealer malware into the systems of unsuspecting victims, as reported in sources [1] [2]. It has been observed that when individuals search for popular tools such as Notepad++, Zoom, AnyDesk, Foxit, Photoshop, and others on Google, they may encounter ads that redirect them to malicious sites. This report aims to provide a high-level analysis of one such campaign, specifically focusing on the delivery of the Vidar Info-stealer malware.

Campaign Details

On the 25th of January 2023, Darktrace researchers observed that the advertisement depicted in Figure 1 was being displayed on Google when searching for the term "Notepad++" from within the United States.

Figure 1: Google Ad shown when searching for Notepad++

As can be seen in Figure 2, the advertisement in question had no visible information regarding its publisher.

Figure 2: Advertisement information

Clicking on the advertisement would direct potential victims to the website notepadplusplus.site, which had been registered on the 4th of January and is hosted on IP address 37[.]140[.]192[.]11. Upon selecting the desired version of the software, a download button is presented to the visitor.

Figure 3: Malicious site with fake Notepad++
Figure 4: Malicious site with fake Notepad++

When clicking on Download, regardless of the version selected, the traffic is then redirected to hxxps://download-notepad-plus-plus[.]duckdns[.]org/, and a .zip file with name “npp.Installer.x64.zip” is downloaded.

Figure 5: Traffic redirection

Upon extraction, the file "npp.Installer.x64.exe" has a file size of 684.1 megabytes. The significant size is attributed to the inclusion of an excessive number of null bytes, which serve to prevent the file from being scanned by some Antivirus and uploaded to malware analysis platforms such as VirusTotal, which has a file size limit of 650 megabytes.

Figure 6: npp.Installer.x64.zip

Initially, padding was incorporated at the end of the executable, enabling individuals to remove it while maintaining a fully functional file. However, in the sample analysed in this report, padding was inserted into the binary's central region. This method renders the removal of padding more challenging, as simply deleting the zeroes would compromise the integrity of the file and impede its functionality during dynamic analysis.

Figure 7: Beginning of null bytes padding

Figure 8: End of null bytes padding

After execution, the malware promptly establishes a connection to a Telegram channel to acquire its command and control (C2) address, specifically hxxp://95[.]217[.]16[.]127. If Telegram is not available, the malware will then attempt to connect to a profile on video game platform Steam, in which case the C2 address was hxxp://157[.]90.148[.]112/ at the time of initial analysis and hxxp://116[.]203[.]6[.]107 later. It then proceeds to check-in and obtain its configuration file and subsequently downloads get.zip, an archive containing several legitimate DLL libraries, which are utilized to extract information and saved passwords from various applications and browsers. Through traffic analysis, the method by which the malware obtains its Command and Control (C2) location, and analysis of the configuration obtained, it can be assessed with high confidence that the malware in question is the info-stealer known as Vidar. Vidar has been extensively covered by various cybersecurity organizations. Further information regarding this info-stealer and its origins can be found here[3].

Figure 9: Telegram traffic
Figure 10: Telegram channel containing the location of Vidar’s C2 address
Figure 11: Steam profile containing the location of Vidar’s C2 address
Figure 12: Vidar C2 traffic
Figure 13: Vidar configuration obtained from the C2
Figure 14: Libraries downloaded by Vidar

Campaign ID 827

The domain download-notepad-plus-plus.duckdns.org, from which the malware is distributed, resolves to the IP address 185[.]163[.]204[.]10. Using passive DNS, it has been determined that multiple domains also resolve to this IP address. This information suggests that the threat group responsible for this campaign is also utilizing advertising to target individuals searching for specific applications besides Notepad++, including:

  • OBS Studio
  • Davinci Resolve
  • Sqlite
  • Rufus
  • Krita

Furthermore, it has been observed that all the malware samples obtained in this investigation connect to the same Telegram channel, utilize the same two Command and Control IP addresses, and share the same campaign ID of "827".

Conclusion 

The recent proliferation of malvertising campaigns, which are employed by cyber-criminals to distribute malware, has become a significant cause for concern. Unlike more traditional infection vectors, such as email, malvertising is harder to protect against. Furthermore, the use of padding techniques to inflate the size of malware payloads can make detection and analysis more challenging.

To mitigate the risk of falling victim to such attacks, it is recommended to exercise caution when interacting with online advertisements. Specifically, it is advisable to avoid clicking on any advertisements while searching for free software on search engines and to instead download programs directly from official sources. This approach can reduce the likelihood of inadvertently downloading malware from untrusted sources. 

Another effective measure to counteract the threat of malicious ads is the utilization of ad-blocker software. The implementation of an ad-blocker can provide an additional layer of protection against malvertising campaigns and enhance overall cybersecurity.

Appendices

Indicators of Compromise

Filename        npp.Installer.x64.zip

SHA256 Hash  7DFD1D4FE925F802513FEA5556DE53706D9D8172BFA207D0F8AAB3CEF46424E8

Filename         npp.Installer.x64.exe

SHA256 Hash  368008b450397c837f0b9c260093935c5cef56646e16a375ba7c47fea5562bfd

Filename         rufus-3.21.zip

SHA256 Hash  75db4f8187abf49376a6ff3de0163b2d708d72948ea4b3d5645b86a0e41af084

Filename         rufus-3.21.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         DaVinci_Resolve_18.1.2_Windows.zip

SHA256 Hash  73f00e3b3ab01f4d5de42790f9ab12474114abe10cd5104f623aef9029c15b1e

Filename         DaVinci_Resolve_18.1.2_Windows.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         krita-x64-5.1.5-setup.zip

SHA256 Hash  85eb4b0e3922312d88ca046d89909fba078943aea3b469d82655a253e0d3ac67

Filename         krita-x64-5.1.5-setup.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

URL     hxxp://95[.]217[.]16[.]127/827  
URL     hxxp://95[.]217[.]16[.]127/get[.]zip  
URL     hxxp://95[.]217[.]16[.]127/  
URL     hxxp://157[.]90[.]148[.]112/827  
URL     hxxp://157[.]90[.]148[.]112/  
URL     hxxp://157[.]90[.]148[.]112/get[.]zip  
URL     hxxp://116[.]203[.]6[.]107/  
Domain  notepadplusplus[.]site  
Domain  download-notepad-plus-plus[.]duckdns[.]org  
Domain  download-obsstudio[.]duckdns[.]org  
Domain  dowbload-notepadd[.]duckdns[.]org  
Domain  dowbload-notepad1[.]duckdns[.]org  
Domain  download-davinci-resolve[.]duckdns[.]org  
Domain  download-davinci[.]duckdns[.]org  
Domain  download-sqlite[.]duckdns[.]org  
Domain  download-davinci17[.]duckdns[.]org  
Domain  download-rufus[.]duckdns[.]org  
Domain  download-kritapaint[.]duckdns[.]org  
IP Address    37[.]140[.]192[.]11  
IP Address     185[.]163[.]204[.]10  
IP Address     95[.]217[.]16[.]127  
IP Address    157[.]90[.]148[.]112  
IP Address    116[.]203[.]6[.]107  
URL     hxxps://t[.]me/litlebey  
URL     hxxps://steamcommunity[.]com/profiles/76561199472399815

References

[1] https://www.bleepingcomputer.com/news/security/hackers-push-malware-via-google-search-ads-for-vlc-7-zip-ccleaner/

[2] https://www.bleepingcomputer.com/news/security/ransomware-access-brokers-use-google-ads-to-breach-your-network/

[3] https://www.team-cymru.com/post/darth-vidar-the-dark-side-of-evolving-threat-infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher

More in this series

No items found.

Blog

/

Network

/

November 12, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI