ブログ
/
Network
/
January 30, 2023

How Vidar Malware Spreads via Malvertising on Google

Discover how Vidar info stealer malware is distributed through malvertising on Google and the risks it poses to users and organizations.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In recent weeks, security researchers and cyber security vendors have noted an increase in malvertising campaigns on Google, aimed at infiltrating info-stealer malware into the systems of unsuspecting victims, as reported in sources [1] [2]. It has been observed that when individuals search for popular tools such as Notepad++, Zoom, AnyDesk, Foxit, Photoshop, and others on Google, they may encounter ads that redirect them to malicious sites. This report aims to provide a high-level analysis of one such campaign, specifically focusing on the delivery of the Vidar Info-stealer malware.

Campaign Details

On the 25th of January 2023, Darktrace researchers observed that the advertisement depicted in Figure 1 was being displayed on Google when searching for the term "Notepad++" from within the United States.

Figure 1: Google Ad shown when searching for Notepad++

As can be seen in Figure 2, the advertisement in question had no visible information regarding its publisher.

Figure 2: Advertisement information

Clicking on the advertisement would direct potential victims to the website notepadplusplus.site, which had been registered on the 4th of January and is hosted on IP address 37.140.192.11. Upon selecting the desired version of the software, a download button is presented to the visitor.

Figure 3: Malicious site with fake Notepad++
Figure 4: Malicious site with fake Notepad++

When clicking on Download, regardless of the version selected, the traffic is then redirected to https://download-notepad-plus-plus.duckdns.org/, and a .zip file with name “npp.Installer.x64.zip” is downloaded.

Figure 5: Traffic redirection

Upon extraction, the file "npp.Installer.x64.exe" has a file size of 684.1 megabytes. The significant size is attributed to the inclusion of an excessive number of null bytes, which serve to prevent the file from being scanned by some Antivirus and uploaded to malware analysis platforms such as VirusTotal, which has a file size limit of 650 megabytes.

Figure 6: npp.Installer.x64.zip

Initially, padding was incorporated at the end of the executable, enabling individuals to remove it while maintaining a fully functional file. However, in the sample analysed in this report, padding was inserted into the binary's central region. This method renders the removal of padding more challenging, as simply deleting the zeroes would compromise the integrity of the file and impede its functionality during dynamic analysis.

Figure 7: Beginning of null bytes padding

Figure 8: End of null bytes padding

After execution, the malware promptly establishes a connection to a Telegram channel to acquire its command and control (C2) address, specifically http://95.217.16.127. If Telegram is not available, the malware will then attempt to connect to a profile on video game platform Steam, in which case the C2 address was http://157.90.148.112/ at the time of initial analysis and http://116.203.6.107 later. It then proceeds to check-in and obtain its configuration file and subsequently downloads get.zip, an archive containing several legitimate DLL libraries, which are utilized to extract information and saved passwords from various applications and browsers. Through traffic analysis, the method by which the malware obtains its Command and Control (C2) location, and analysis of the configuration obtained, it can be assessed with high confidence that the malware in question is the info-stealer known as Vidar. Vidar has been extensively covered by various cybersecurity organizations. Further information regarding this info-stealer and its origins can be found here[3].

Figure 9: Telegram traffic
Figure 10: Telegram channel containing the location of Vidar’s C2 address
Figure 11: Steam profile containing the location of Vidar’s C2 address
Figure 12: Vidar C2 traffic
Figure 13: Vidar configuration obtained from the C2
Figure 14: Libraries downloaded by Vidar

Campaign ID 827

The domain download-notepad-plus-plus.duckdns.org, from which the malware is distributed, resolves to the IP address 185.163.204.10. Using passive DNS, it has been determined that multiple domains also resolve to this IP address. This information suggests that the threat group responsible for this campaign is also utilizing advertising to target individuals searching for specific applications besides Notepad++, including:

  • OBS Studio
  • Davinci Resolve
  • Sqlite
  • Rufus
  • Krita

Furthermore, it has been observed that all the malware samples obtained in this investigation connect to the same Telegram channel, utilize the same two Command and Control IP addresses, and share the same campaign ID of "827".

Conclusion 

The recent proliferation of malvertising campaigns, which are employed by cyber-criminals to distribute malware, has become a significant cause for concern. Unlike more traditional infection vectors, such as email, malvertising is harder to protect against. Furthermore, the use of padding techniques to inflate the size of malware payloads can make detection and analysis more challenging.

To mitigate the risk of falling victim to such attacks, it is recommended to exercise caution when interacting with online advertisements. Specifically, it is advisable to avoid clicking on any advertisements while searching for free software on search engines and to instead download programs directly from official sources. This approach can reduce the likelihood of inadvertently downloading malware from untrusted sources. 

Another effective measure to counteract the threat of malicious ads is the utilization of ad-blocker software. The implementation of an ad-blocker can provide an additional layer of protection against malvertising campaigns and enhance overall cybersecurity.

Appendices

Indicators of Compromise

Filename        npp.Installer.x64.zip

SHA256 Hash  7DFD1D4FE925F802513FEA5556DE53706D9D8172BFA207D0F8AAB3CEF46424E8

Filename         npp.Installer.x64.exe

SHA256 Hash  368008b450397c837f0b9c260093935c5cef56646e16a375ba7c47fea5562bfd

Filename         rufus-3.21.zip

SHA256 Hash  75db4f8187abf49376a6ff3de0163b2d708d72948ea4b3d5645b86a0e41af084

Filename         rufus-3.21.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         DaVinci_Resolve_18.1.2_Windows.zip

SHA256 Hash  73f00e3b3ab01f4d5de42790f9ab12474114abe10cd5104f623aef9029c15b1e

Filename         DaVinci_Resolve_18.1.2_Windows.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

Filename         krita-x64-5.1.5-setup.zip

SHA256 Hash  85eb4b0e3922312d88ca046d89909fba078943aea3b469d82655a253e0d3ac67

Filename         krita-x64-5.1.5-setup.exe

SHA256 Hash  169603a5b5d23dc2f02dc0f88a73dcdd08a5c62d12203fb53a3f43998c04bb41

URL      http://95.217.16.127/827

URL      http://95.217.16.127/get.zip

URL      http://95.217.16.127/

URL      http://157.90.148.112/827

URL     http://157.90.148.112/

URL      http://157.90.148.112/get.zip

URL      http://116.203.6.107/

Domain           notepadplusplus.site

Domain           download-notepad-plus-plus.duckdns.org

Domain           download-obsstudio.duckdns.org

Domain           dowbload-notepadd.duckdns.org

Domain           dowbload-notepad1.duckdns.org

Domain           download-davinci-resolve.duckdns.org

Domain           download-davinci.duckdns.org

Domain           download-sqlite.duckdns.org

Domain           download-davinci17.duckdns.org

Domain           download-rufus.duckdns.org

Domain           download-kritapaint.duckdns.org

IP Address      37.140.192.11

IP Address      185.163.204.10

IP Address      95.217.16.127

IP Address       157.90.148.112

IP Address      116.203.6.107

URL      https://t.me/litlebey

URL      https://steamcommunity.com/profiles/76561199472399815

References

[1] https://www.bleepingcomputer.com/news/security/hackers-push-malware-via-google-search-ads-for-vlc-7-zip-ccleaner/

[2] https://www.bleepingcomputer.com/news/security/ransomware-access-brokers-use-google-ads-to-breach-your-network/

[3] https://www.team-cymru.com/post/darth-vidar-the-dark-side-of-evolving-threat-infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Martinez
Devalyst, Threat Researcher

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ