Blog
/
Network
/
January 30, 2023

Qakbot Resurgence in the Cyber Landscape

Stay informed on the evolving threat Qakbot. Protect yourself from the Qakbot resurgence! Learn more from our Darktrace AI Cybersecurity experts!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Jan 2023

In June 2022, Darktrace observed a surge in Qakbot infections across its client base. The detected Qakbot infections, which in some cases led to the delivery of secondary payloads such as Cobalt Strike and Dark VNC, were initiated through novel delivery methods birthed from Microsoft’s default blocking of XL4 and VBA macros in early 2022 [1]/[2]/[3]/[4] and from the public disclosure in May 2022 [5] of the critical Follina vulnerability (CVE-2022-30190) in Microsoft Support Diagnostic Tool (MSDT). Despite the changes made to Qakbot’s delivery methods, Qakbot infections still inevitably resulted in unusual patterns of network activity. In this blog, we will provide details of these network activities, along with Darktrace/Network’s coverage of them. 

Qakbot Background 

Qakbot emerged in 2007 as a banking trojan designed to steal sensitive data such as banking credentials.  Since then, Qakbot has developed into a highly modular triple-threat powerhouse used to not only steal information, but to also drop malicious payloads and to serve as a backdoor. The malware is also versatile, with its delivery methods regularly changing in response to the changing threat landscape.  

Threat actors deliver Qakbot through email-based delivery methods. In the first half of 2022, Microsoft started rolling out versions of Office which block XL4 and VBA macros by default. Prior to this change, Qakbot email campaigns typically consisted in the spreading of deceitful emails with Office attachments containing malicious macros.  Opening these attachments and then enabling the macros within them would lead users’ devices to install Qakbot.  

Actors who deliver Qakbot onto users’ devices may either sell their access to other actors, or they may leverage Qakbot’s capabilities to pursue their own objectives [6]. A common objective of actors that use Qakbot is to drop Cobalt Strike beacons onto infected systems. Actors will then leverage the interactive access provided by Cobalt Strike to conduct extensive reconnaissance and lateral movement activities in preparation for widespread ransomware deployment. Qakbot’s close ties to ransomware activity, along with its modularity and versatility, make the malware a significant threat to organisations’ digital environments.

Activity Details and Qakbot Delivery Methods

During the month of June, variationsof the following pattern of network activity were observed in several client networks:

1.     User’s device contacts an email service such as outlook.office[.]com or mail.google[.]com

2.     User’s device makes an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. The request is responded to with an HTML file containing a exploit for the Follina vulnerability (CVE-2022-30190)

3.     User’s device makes an HTTP GET request with a cURL User-Agent string and a target URI ending in ‘.dat’ to an unusual external endpoint. The request is responded to with a Qakbot DLL sample

4.     User’s device contacts Qakbot Command and Control servers over ports such as 443, 995, 2222, and 32101

In some cases, only steps 1 and 4 were seen, and in other cases, only steps 1, 3, and 4 were seen. The different variations of the pattern correspond to different Qakbot delivery methods.

Figure 1: Geographic distribution of Darktrace clients affected by Qakbot

Qakbot is known to be delivered via malicious email attachments [7]. The Qakbot infections observed across Darktrace’s client base during June were likely initiated through HTML smuggling — a method which consists in embedding malicious code into HTML attachments. Based on open-source reporting [8]-[14] and on observed patterns of network traffic, we assess with moderate to high confidence that the Qakbot infections observed across Darktrace’s client base during June 2022 were initiated via one of the following three methods:

  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a LNK file, which when opened, causes the user's device to make an external HTTP GET request with a cURL User-Agent string and a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DLL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a docx file, which when opened, causes the user's device to make an HTTP GET request to 185.234.247[.]119 with an Office user-agent string and a ‘/123.RES' target URI. If successful, the HTTP GET request is responded to with an HTML file containing a Follina exploit. The Follina exploit causes the user's device to make an external HTTP GET with a '.dat' target URI. If successful, the HTTP GET request is responded to with a Qakbot DL.
  • User opens HTML attachment which drops a ZIP file on their device. ZIP file contains a Qakbot DLL and a LNK file, which when opened, causes the DLL to run.

The usage of these delivery methods illustrate how threat actors are adopting to a post-macro world [4], with their malware delivery techniques shifting from usage of macros-embedding Office documents to usage of container files, Windows Shortcut (LNK) files, and exploits for novel vulnerabilities. 

The Qakbot infections observed across Darktrace’s client base did not only vary in terms of their delivery methods — they also differed in terms of their follow-up activities. In some cases, no follow-up activities were observed. In other cases, however, actors were seen leveraging Qakbot to exfiltrate data and to deliver follow-up payloads such as Cobalt Strike and Dark VNC.  These follow-up activities were likely preparation for the deployment of ransomware. Darktrace’s early detection of Qakbot activity within client environments enabled security teams to take actions which likely prevented the deployment of ransomware. 

Darktrace Coverage 

Users’ interactions with malicious email attachments typically resulted in their devices making cURL HTTP GET requests with empty Host headers and target URIs ending in ‘.dat’ (such as as ‘/24736.dat’ and ‘/noFindThem.dat’) to rare, external endpoints. In cases where the Follina vulnerability is believed to have been exploited, users’ devices were seen making HTTP GET requests to 185.234.247[.]119 with a Microsoft Office User-Agent string before making cURL HTTP GET requests. The following Darktrace DETECT/Network models typically breached as a result of these HTTP activities:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent and New IP
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download 

These DETECT models were able to capture the unusual usage of Office and cURL User-Agent strings on affected devices, as well as the downloads of the Qakbot DLL from rare external endpoints. These models look for unusual activity that falls outside a device’s usual pattern of behavior rather than for activity involving User-Agent strings, URIs, files, and external IPs which are known to be malicious.

When enabled, Darktrace RESPOND/Network autonomously intervened, taking actions such as ‘Enforce group pattern of life’ and ‘Block connections’ to quickly intercept connections to Qakbot infrastructure. 

Figure 2: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download a file containing a Follina exploit
Figure 3: This ‘New User Agent to IP Without Hostname’ model breach highlights an example of Darktrace’s detection of a device attempting to download Qakbot
Figure 4: The Event Log for an infected device highlights the moment a connection to the endpoint outlook.office365[.]com was made. This was followed by an executable file transfer detection and use of a new User-Agent, curl/7.9.1

After installing Qakbot, users’ devices started making connections to Command and Control (C2) endpoints over ports such as 443, 22, 990, 995, 1194, 2222, 2078, 32101. Cobalt Strike and Dark VNC may have been delivered over some of these C2 connections, as evidenced by subsequent connections to endpoints associated with Cobalt Strike and Dark VNC. These C2 activities typically caused the following Darktrace DETECT/Network models to breach: 

  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Suspicious Beaconing Behavior
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Large Number of Suspicious Successful Connections
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Anomalous Connection / Rare External SSL Self-Signed
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Slow Beaconing Activity To External Rare
Figure 5: This Device Event Log illustrates the Command and Control activity displayed by a Qakbot-infected device

The Darktrace DETECT/Network models which detected these C2 activities do not look for devices making connections to known, malicious endpoints. Rather, they look for devices deviating from their ordinary patterns of activity, making connections to external endpoints which internal devices do not usually connect to, over ports which devices do not normally connect over. 

In some cases, actors were seen exfiltrating data from Qakbot-infected systems and dropping Cobalt Strike in order to conduct extensive discovery. These exfiltration activities typically caused the following models to breach:

  • Anomalous Connection / Data Sent to Rare Domain
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Unusual Activity / Unusual External Data to New Endpoints

The reconnaissance and brute-force activities carried out by actors typically resulted in breaches of the following models:

  • Device / ICMP Address Scan
  • Device / Network Scan
  • Anomalous Connection / SMB Enumeration
  • Device / New or Uncommon WMI Activity
  •  Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  •  Device / SMB Lateral Movement
  •  Device / Increase in New RPC Services
  •  Device / Spike in LDAP Activity
  • Device / Possible SMB/NTLM Brute Force
  • Device / SMB Session Brute Force (Non-Admin)
  • Device / SMB Session Brute Force (Admin)
  • Device / Anomalous NTLM Brute Force

Conclusion

June 2022 saw Qakbot swiftly mould itself in response to Microsoft's default blocking of macros and the public disclosure of the Follina vulnerability. The evolution of the threat landscape in the first half of 2022 caused Qakbot to undergo changes in its delivery methods, shifting from delivery via macros-based methods to delivery via HTML smuggling methods. The effectiveness of these novel delivery methods where highlighted in Darktrace's client base, where large volumes of Qakbot infections were seen during June 2022. Leveraging Self-Learning AI, Darktrace DETECT/Network was able to detect the unusual network behaviors which inevitably resulted from these novel Qakbot infections. Given that the actors behind these Qakbot infections were likely seeking to deploy ransomware, these detections, along with Darktrace RESPOND/Network’s autonomous interventions, ultimately helped to protect affected Darktrace clients from significant business disruption.  

Appendices

List of IOCs

References

[1] https://techcommunity.microsoft.com/t5/excel-blog/excel-4-0-xlm-macros-now-restricted-by-default-for-customer/ba-p/3057905

[2] https://techcommunity.microsoft.com/t5/microsoft-365-blog/helping-users-stay-safe-blocking-internet-macros-by-default-in/ba-p/3071805

[3] https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

[4] https://www.proofpoint.com/uk/blog/threat-insight/how-threat-actors-are-adapting-post-macro-world

[5] https://twitter.com/nao_sec/status/1530196847679401984

[6] https://www.microsoft.com/security/blog/2021/12/09/a-closer-look-at-qakbots-latest-building-blocks-and-how-to-knock-them-down/

[7] https://www.zscaler.com/blogs/security-research/rise-qakbot-attacks-traced-evolving-threat-techniques

[8] https://www.esentire.com/blog/resurgence-in-qakbot-malware-activity

[9] https://www.fortinet.com/blog/threat-research/new-variant-of-qakbot-spread-by-phishing-emails

[10] https://twitter.com/pr0xylife/status/1539320429281615872

[11] https://twitter.com/max_mal_/status/1534220832242819072

[12] https://twitter.com/1zrr4h/status/1534259727059787783?lang=en

[13] https://isc.sans.edu/diary/rss/28728

[14] https://www.fortiguard.com/threat-signal-report/4616/qakbot-delivered-through-cve-2022-30190-follina

Credit to:  Hanah Darley, Cambridge Analyst Team Lead and Head of Threat Research and Sam Lister, Senior Cyber Analyst

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI