Blog
/
/
May 31, 2021

Exploiting Compliance: Ransomware Gang Tactics

Understand the methods ransomware gangs use to exploit security compliance and how Darktrace's AI can mitigate these threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
May 2021

Compliance regulations like CCPA and GDPR are created with good intentions. They aim to secure user data, ensure privacy, and build trust between the companies and consumers. However, these regulations have become a double-edged sword for many organizations.

One reason for this is the rise of double extortion ransomware, where data is exfiltrated before files are encrypted. In this scenario, threat actors threaten to release sensitive company information online if the ransom is not paid. Companies can face hefty fines if they fail to comply with regulation, and thus they are pressured into paying the ransom just to keep the breach quiet.

Consequences of non-compliance

Today’s businesses face a range of demanding privacy regulations that are frequently being updated. This includes General Data Protection Regulation, or GDPR, the California Consumer Privacy Act, or CCPA, and regulations from the New York State Department Of Financial Services, or NYDFS.

With the shift to remote and dynamic working, and the ever-increasing complexity of business operations, there has been great pressure for companies to upgrade infrastructure and ensure that they are meeting all regulations.

Non-compliance can lead to significant financial penalties and drawn-out legal actions. If organizations fail to protect their data, the fees can be disastrous. GDPR can fine companies up to €20 million, or 4% of a company’s annual global turnover. For example, since 2017, Google has been fined a combined total of $9.5 billion by EU regulators.

Weaponization of compliance

Ultimately, compliance serves the important purpose of giving citizens more control and rights over their data. However, cyber-criminals have realized that they can use the threat of non-compliance as a pressure point against organizations. Stolen data, if released to the public, can lead to huge regulatory fines.

We have seen this phenomenon in double extortion ransomware attacks, where threat actors steal sensitive data before they encrypt the files. Moreover, several ransomware actors, such as the Babuk gang, now have begun to forsake encryption in favor of extortion. This is because threat actors realize that exfiltration is more effective when many organizations continually back up files as a precaution against the threat of ransomware locking down files.

Ransomware actors often auction intellectual property, customer data, and company secrets on the Dark Web. The Maze ransomware group established this trend back when it created a website in late 2019 to publicly ‘name and shame’ organizations that had been compromised. These attacks included theft of information such as stolen PDF files, in addition to IP addresses and device names which were then uploaded and made publicly available on its website.

Over 70% of ransomware attacks now involve exfiltration.

The tactic was made infamous by the cyber-criminal group REvil, who publicly announced their intentions on a Russian hacker forum in December 2019:

“Each attack is accompanied by a copy of commercial information. In case of refusal of payment, the data will either be sold to competitors or laid out in open sources. GDPR. Do not want to pay us – pay x10 more to the government. No problems.”

In these cases, threat actors are essentially saying, ‘if you pay us this small ransom, we will keep your data safe. If you don’t pay us, we have the power to release your data, and then you can take your chances with a huge compliance fine.’

Organizations may prefer to negotiate with cyber-criminals and keep the breach – or threat of breach – quiet. This is what the ransomware attackers are banking on.

How AI can help: Stopping ransomware and strengthening compliance

Compliance fines are not cheap. It took over three years of legal proceedings for Equifax to settle their 2017 data breach. They finally settled with paying $700 million to regulators, including the Federal Trade Commission and the Consumer Financial Protection Bureau (CFPB). Home Depot and Uber have also famously faced financial penalties of hundreds of millions of dollars.

These regulatory fines are compounding the potential consequences of ransomware. The continued ability of attackers to adapt and find new weaknesses means that it is crucial for companies to identify and contain ransomware in its earliest stages, with machine speed and precision.

Darktrace’s AI has achieved this repeatedly, such as when a WastedLocker intrusion was stopped before the ransomware was deployed. By constantly evolving its understanding of the organization, Cyber AI detects and automatically investigates all unusual activity across the enterprise and can respond autonomously in real time to stop threats in their tracks.

Figure 1: Darktrace’s customizable CCPA tags allow for specialized alerting on activity related to personal data as defined by CCPA

Furthermore, Darktrace’s technology can be used to action specific types of alerts based on different compliance threat models. For instance, businesses seeking to ensure compliance with CCPA requirements can use a specific ‘CCPA Tag’ for certain devices which have, or are likely to have, consumer data subject to the CCPA. When relevant data from the tagged devices leaves the environment or is involved in any abnormal activity, Darktrace’s AI detects this immediately and automatically launches an investigation into the incident.

With a proven ability to protect against machine-speed threats, and the ability to strengthen compliance with customizable alerts, the Darktrace Immune System platform provides a powerful defense against double extortion ransomware.

Under pressure

Compliance is just one of the many strategic concerns facing ransomware victims. In addition to customer trust, valuable IP, and long-term reputation, attackers and defenders are in a constant ‘cat and mouse’ game, such that threat actors will continue to seek out new pressure points to extort their targets.

Figure 2: Current varieties of double extortion ransomware

Organizations accordingly will benefit from using sophisticated technologies that neutralize ransomware before it has encrypted or exfiltrated files, stopping advanced threats in their earliest stages.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO

More in this series

No items found.

Blog

/

OT

/

June 11, 2025

Proactive OT security: Lessons on supply chain risk management from a rogue Raspberry Pi

man working on computerDefault blog imageDefault blog image

Understanding supply chain risk in manufacturing

For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.  

The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:

  • Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
  • In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
  • During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].

Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention. 

A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.  

This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.

Case study: Using unsupervised machine learning to detect pre-existing security issues

Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].

In this incident, a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network. 

For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were  unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).  

Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:

  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Tags / New Raspberry Pi Device
  • Device / DNS Requests to Unusual Server
  • Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.

Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.

Why is this significant?

In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].  

The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.

A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.  

The growing interest in manufacturing from attackers and policymakers

Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.

Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].

How can Darktrace help?

Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs.  Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.  

While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled.  Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.  

Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities.  This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk.  As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.  

Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)

[related-resource]

Appendices

MITRE ATT&CK Mapping

  • Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
  • Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
  • Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols

References

[1] https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats

[2] https://www.trendmicro.com/vinfo/gb/threat-encyclopedia/web-attack/139/havex-targets-industrial-control-systems

[3]https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html

[4] https://www.theverge.com/2020/12/21/22194183/intel-nvidia-cisco-government-infected-solarwinds-hack

[5] https://www.centreon.com/monitoring-ot-with-raspberry-pi-and-centreon/

[6] https://ieeexplore.ieee.org/document/9107689

[7] https://www.linkedin.com/pulse/webicc-scada-integration-industrial-raspberry-pi-devices-mryff

[8] https://www.rowse.co.uk/blog/post/how-is-the-raspberry-pi-used-in-the-iiot

[9] https://sepiocyber.com/resources/whitepapers/raspberry-pi-a-friend-or-foe/#:~:text=Initially%20designed%20for%20ethical%20purposes,as%20cyberattacks%20and%20unauthorized%20access

[10] https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

[11] https://www.mxdusa.org/2025/02/13/top-cyber-threats-in-manufacturing/

[12] https://www.shoosmiths.com/insights/articles/nis2-what-manufacturers-and-distributors-need-to-know-about-europes-new-cybersecurity-regime

[13] https://www.goodaccess.com/blog/nis2-require-zero-trust-essential-security-measure#zero-trust-nis2-compliance

[14] https://logisticsviewpoints.com/2024/11/06/the-impact-of-nis-2-regulations-on-manufacturing-supply-chains/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst

Blog

/

Compliance

/

June 9, 2025

Modernising UK Cyber Regulation: Implications of the Cyber Security and Resilience Bill

Two individuals sitting at a desk working on a documentDefault blog imageDefault blog image

The need for security and continued cyber resilience

The UK government has made national security a key priority, and the new Cyber Security and Resilience Bill (CSRB) is a direct reflection of that focus. In introducing the Bill, Secretary of State for Science, Innovation and Technology, Peter Kyle, recognised that the UK is “desperately exposed” to cyber threats—from criminal groups to hostile nation-states that are increasingly targeting the UK's digital systems and critical infrastructure[1].

Context and timeline for the new legislation

First announced during the King’s Speech of July 2024, and elaborated in a Department for Science, Innovation and Technology (DSIT) policy statement published in April 2025, the CSRB is expected to be introduced in Parliament during the 2025-26 legislative session.

For now, organisations in the UK remain subject to the 2018 Network and Information Systems (NIS) Regulations – an EU-derived law which was drafted before today’s increasing digitisation of critical services, rise in cloud adoption and emergence of AI-powered threats.

Why modernisation is critical

Without modernisation, the Government believes UK’s infrastructure and economy risks falling behind international peers. The EU, which revised its cybersecurity regulation under the NIS2 Directive, already imposes stricter requirements on a broader set of sectors.

The urgency of the Bill is also underscored by recent high-impact incidents, including the Synnovis attack which targeted the National Health Service (NHS) suppliers and disrupted thousands of patient appointments and procedures[2]. The Government has argued that such events highlight a systemic failure to keep pace with a rapidly evolving threat landscape[3].

What the Bill aims to achieve

This Bill represents a decisive shift. According to the Government, it will modernise and future‑proof the UK’s cyber laws, extending oversight to areas where risk has grown but regulation has not kept pace[4]. While the legislation builds on previous consultations and draws lessons from international frameworks like the EU’s NIS2 directive, it also aims to tailor solutions to the UK’s unique threat environment.

Importantly, the Government is framing cybersecurity not as a barrier to growth, but as a foundation for it. The policy statement emphasises that strong digital resilience will create the stability businesses need to thrive, innovate, and invest[5]. Therefore, the goals of the Bill will not only be to enhance security but also act as an enabler to innovation and economic growth.

Recognition that AI changes cyber threats

The CSRB policy statement recognises that AI is fundamentally reshaping the threat landscape, with adversaries now leveraging AI and commercial cyber tools to exploit vulnerabilities in critical infrastructure and supply chains. Indeed, the NCSC has recently assessed that AI will almost certainly lead to “an increase in the frequency and intensity of cyber threats”[6]. Accordingly, the policy statement insists that the UK’s regulatory framework “must keep pace and provide flexibility to respond to future threats as and when they emerge”[7].

To address the threat, the Bill signals new obligations for MSPs and data centres, timely incident reporting and dynamic guidance that can be refreshed without fresh primary legislation, making it essential for firms to follow best practices.

What might change in day-to-day practice?

New organisations in scope of regulation

Under the existing Network and Information Systems (NIS) Regulations[8], the UK already supervises operators in five critical sectors—energy, transport, drinking water, health (Operators of Essential Services, OES) and digital infrastructure (Relevant Digital Service Providers, RDSPs).

The Cyber Security and Resilience Bill retains this foundation and adds Managed Service Providers (MSPs) and data centres to the scope of regulation to “better recognise the increasing reliance on digital services and the vulnerabilities posed by supply chains”[9]. It also grants the Secretary of State for Science, Innovation and Technology the power to add new sectors or sub‑sectors via secondary legislation, following consultation with Parliament and industry.

Managed service providers (MSPs)

MSPs occupy a central position within the UK’s enterprise information‑technology infrastructure. Because they remotely run or monitor clients’ systems, networks and data, they hold privileged, often continuous access to multiple environments. This foothold makes them an attractive target for malicious actors.

The Bill aims to bring MSPs in scope of regulation by making them subject to the same duties as those placed on firms that provide digital services under the 2018 NIS Regulations. By doing so, the Bill seeks to raise baseline security across thousands of customer environments and to provide regulators with better visibility of supply‑chain risk.

The proposed definition for MSPs is a service which:

  1. Is provided to another organisation
  2. Relies on the use of network and information systems to deliver the service
  3. Relates to ongoing management support, active administration and/or monitoring of AI systems, IT infrastructure, applications, and/or IT networks, including for the purpose of activities relating to cyber security.
  4. Involves a network connection and/or access to the customer’s network and information systems.

Data centres

Building on the September 2024 designation of data centres as critical national infrastructure, the CSRB will fold data infrastructure into the NIS-style regime by naming it an “relevant sector" and data centres as “essential service”[10].

About 182 colocation facilities run by 64 operators will therefore come under statutory duties to notify the regulator, maintain proportionate CAF-aligned controls and report significant incidents, regardless of who owns them or what workloads they host.

New requirements for regulated organisations

Incident reporting processes

There could be stricter timelines or broader definitions of what counts as a reportable incident. This might nudge organisations to formalise detection, triage, and escalation procedures.

The Government is proposing to introduce a new two-stage incident reporting process. This would include an initial notification which would be submitted within 24 hours of becoming aware of a significant incident, followed by a full incident report which should be submitted within 72 hours of the same.

Supply chain assurance requirements

Supply chains for the UK's most critical services are becoming increasingly complex and present new and serious vulnerabilities for cyber-attacks. The recent Synnovis ransomware attacks on the NHS[11] exemplify the danger posed by attacks against the supply chains of important services and organisations. This is concerning when reflecting on the latest Cyber Security Breaches survey conducted by DSIT, which highlights that fewer than 25% of large businesses review their supply chain risks[12].

Despite these risks, the UK’s legacy cybersecurity regulatory regime does not explicitly cover supply chain risk management. The UK instead relies on supporting and non-statutory guidance to close this gap, such as the NCSC’s Cyber Assessment Framework (CAF)[13].

The CSRB policy statement acts on this regulatory shortcoming and recognises that “a single supplier’s disruption can have far-reaching impacts on the delivery of essential or digital services”[14].

To address this, the Bill would make in-scope organisations (OES and RDPS) directly accountable for the cybersecurity of their supply chains. Secondary legislation would spell out these duties in detail, ensuring that OES and RDSPs systematically assess and mitigate third-party cyber risks.

Updated and strengthened security requirements

By placing the CAF into a firmer footing and backing it with a statutory Code of Practice, the Government is setting clearer expectations about government expectations on technical standards and methods organisations will need to follow to prove their resilience.

How Darktrace can help support affected organizations

Demonstrate resilience

Darktrace’s Self-Learning AITM continuously monitors your digital estate across cloud, network, OT, email, and endpoint to detect, investigate, and autonomously respond to emerging threats in real time. This persistent visibility and defense posture helps organizations demonstrate cyber resilience to regulators with confidence.

Streamline incident reporting and compliance

Darktrace surfaces clear alerts and automated investigation reports, complete with timeline views and root cause analysis. These insights reduce the time and complexity of regulatory incident reporting and support internal compliance workflows with auditable, AI-generated evidence.

Improve supply chain visibility

With full visibility across connected systems and third-party activity, Darktrace detects early indicators of lateral movement, account compromise, and unusual behavior stemming from vendor or partner access, reducing the risk of supply chain-originated cyber-attacks.

Ensure MSPs can meet new standards

For managed service providers, Darktrace offers native multi-tenant support and autonomous threat response that can be embedded directly into customer environments. This ensures consistent, scalable security standards across clients—helping MSPs address increasing regulatory obligations.

[related-resource]

References

[1] https://www.theguardian.com/uk-news/article/2024/jul/29/uk-desperately-exposed-to-cyber-threats-and-pandemics-says-minister

[2] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[3] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[4] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[5] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[6] https://www.ncsc.gov.uk/report/impact-ai-cyber-threat-now-2027

[7] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[8] https://www.gov.uk/government/collections/nis-directive-and-nis-regulations-2018

[9] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[10] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[11] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[12] https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2025/cyber-security-breaches-survey-2025

[13] https://www.ncsc.gov.uk/collection/cyber-assessment-framework

[14] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI