Blog
/
/
August 6, 2020

Ransomware-As-A-Service Threat: Eking Targets Government

Discover how Eking ransomware targeted a government organization in APAC. Learn about ransomware as a service & the cyber AI technology that stopped the threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Aug 2020

Despite being widely recognized as a serious threat for a number of years, ransomware continues to persist. The total global cost of this threat vector is projected to reach $20 billion by 2021. With this level of financial return for attackers, it is no wonder that they continue to develop new strains of ransomware and advance their techniques to bypass security tools and ensure their campaigns are successful.

In the last few weeks, Darktrace’s AI has detected an attacker abusing off-the-shelf products to deploy ransomware at an African retailer, along with high-profile WastedLocker and Emotet attacks. Here, we look at Eking ransomware – a variant of the Phobos ransomware family – that targeted a government organization in the APAC region.

This attack was likely an example of Ransomware-as-a-Service (RaaS); a particularly concerning threat for security teams as it allows lower-level actors to get hold of sophisticated malware. This blog post breaks down Eking ransomware in detail, showing how Cyber AI enabled the defenders to recognize the anomalous behavior as soon as it occurred and stop the threat from advancing – and causing damage. It also shows how Darktrace’s Cyber AI Analyst autonomously investigated the broader security incident, generating an easy-to-understand and actionable report as the activity unfolded.

An overview of the attack

An internal server was infected with Eking ransomware via an attack vector outside of Darktrace’s visibility, most likely an employee clicking a malicious link within an email. Antigena Email would likely have identified suspicious characteristics of the email and stopped it from reaching employees’ inboxes, preventing the threat at the first hurdle. However, in this instance, the customer had only deployed Cyber AI across their network. This still enabled Darktrace’s Immune System to identify lateral movement and encryption activity indicative of ransomware.

The infected device began engaging in internal reconnaissance activity on a single internal subnet. This included SMB enumeration via the SRVSVC and winreg pipes, as well as extensive scanning over 10 commonly exploited ports. Indicators of Nmap were also detected during this phase of the attack.

About four and a half hours after this scanning concluded, the infected server began encrypting files on a second server. The device transitioned from making just a few internal connections per day to making thousands in less than an hour. This dramatic shift in behavior was immediately detected by Darktrace’s AI as highly threatening and the Cyber AI Analyst began autonomously investigating.

Figure 1: An overview of events

Internal reconnaissance and encryption – sometimes referred to as detonation – took place late at night local time. This may have been strategic on the part of the attackers, as the number of security professionals actively monitoring the network was probably lower, slowing the speed of the organization’s response. Endpoint defenses did not prevent the threat – likely indicating that this was a slightly modified strain of the Eking ransomware that was able to bypass these signature-based tools.

While Darktrace provides complete coverage across email, IoT, and cloud environments, business challenges or segmentation sometimes prevent security teams from obtaining full visibility across their organization. However, even when working with imperfect data and suboptimal coverage, Cyber AI still identified this threat as it emerged.

AI Analyst coverage

When the first model breach occurred, this triggered Darktrace’s Cyber AI Analyst to launch a real-time investigation into the events as they unfolded. Piecing together the lateral movement and the later encryption, the technology recognized that these separate events were part of a wider security narrative. It surfaced an incident summary and several key metrics for the security team to review and action a response.

Figure 2: Internal reconnaissance of the subnet over a number of sensitive ports

Figure 3: Encryption phase of the attack

Figure 4: A graph of connections and unusual activity demonstrating how significant of a deviation this activity was from normal device behavior

Off the shelf: The commercialization of cyber-crime

This incident demonstrates how the rise in Ransomware-as-a-Service is allowing lower-level threat actors to access sophisticated strains of ransomware as well as novel variants of well-known attacks. The cyber-crime market is estimated to be worth $1.6 billion, and this figure is only likely to rise as the relatively new ‘industry’ matures. As a result, the potential perpetrators of advanced cyber-attacks like the one detailed above are no longer confined to professional cyber-criminal rings, who have outsourced their tactics, techniques and procedures to a wider range of threat actors willing to pay the right price. As lower-level threat actors get access, more organizations will find themselves targeted by increasingly sophisticated threats.

Just this week, Darktrace observed a high-profile example of RaaS in a Sodinokibi ransomware attack that hit a retail organization in the US. The infected device engaged in anomalous administrative activities before writing an unusual executable file, sharing it with other internal locations and then encrypting multiple files on the network and writing its own ransom note files.

With ransomware attacks continuing to target organizations large and small, security teams are fundamentally changing their approach to cyber defense, turning to artificial intelligence to stop attacks that other tools miss. Without relying on pre-defined rules and signatures, Cyber AI learns a sense of ‘self’ for a unique organization to detect and respond to anomalous activity as soon as it occurs.

Fight back with Autonomous Response

Threat actors know that deploying ransomware at weekends or at night is more likely to succeed because an organization’s response time is typically slower. Darktrace’s Autonomous Response operates around the clock, taking a targeted and proportionate response to contain malicious activity wherever it occurs, whether in the network, email, or in cloud and SaaS applications.

Had Darktrace Antigena been deployed at this government in APAC, it would have taken action at the first stage of the attack – as the initial scanning took place – and prevented the malware from ever reaching the encryption stage. However, in this case, when the security team returned to the office the next morning, they were still able to act faster than they otherwise would have and limit the damage, thanks to the fully-investigated incident and actionable intelligence of the Cyber AI Analyst’s AI-powered investigations.

Thanks to Darktrace analyst Brian Evans for his insights on the above threat find.

Learn more about Autonomous Response

IoCs:

IoCComment.ekingEking encryption extension

Darktrace model detections:

  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Anomalous Connection / Unusual Internal Remote Desktop
  • Device / RDP Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI