Blog
/
/
August 6, 2020

Ransomware-As-A-Service Threat: Eking Targets Government

Discover how Eking ransomware targeted a government organization in APAC. Learn about ransomware as a service & the cyber AI technology that stopped the threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Aug 2020

Despite being widely recognized as a serious threat for a number of years, ransomware continues to persist. The total global cost of this threat vector is projected to reach $20 billion by 2021. With this level of financial return for attackers, it is no wonder that they continue to develop new strains of ransomware and advance their techniques to bypass security tools and ensure their campaigns are successful.

In the last few weeks, Darktrace’s AI has detected an attacker abusing off-the-shelf products to deploy ransomware at an African retailer, along with high-profile WastedLocker and Emotet attacks. Here, we look at Eking ransomware – a variant of the Phobos ransomware family – that targeted a government organization in the APAC region.

This attack was likely an example of Ransomware-as-a-Service (RaaS); a particularly concerning threat for security teams as it allows lower-level actors to get hold of sophisticated malware. This blog post breaks down Eking ransomware in detail, showing how Cyber AI enabled the defenders to recognize the anomalous behavior as soon as it occurred and stop the threat from advancing – and causing damage. It also shows how Darktrace’s Cyber AI Analyst autonomously investigated the broader security incident, generating an easy-to-understand and actionable report as the activity unfolded.

An overview of the attack

An internal server was infected with Eking ransomware via an attack vector outside of Darktrace’s visibility, most likely an employee clicking a malicious link within an email. Antigena Email would likely have identified suspicious characteristics of the email and stopped it from reaching employees’ inboxes, preventing the threat at the first hurdle. However, in this instance, the customer had only deployed Cyber AI across their network. This still enabled Darktrace’s Immune System to identify lateral movement and encryption activity indicative of ransomware.

The infected device began engaging in internal reconnaissance activity on a single internal subnet. This included SMB enumeration via the SRVSVC and winreg pipes, as well as extensive scanning over 10 commonly exploited ports. Indicators of Nmap were also detected during this phase of the attack.

About four and a half hours after this scanning concluded, the infected server began encrypting files on a second server. The device transitioned from making just a few internal connections per day to making thousands in less than an hour. This dramatic shift in behavior was immediately detected by Darktrace’s AI as highly threatening and the Cyber AI Analyst began autonomously investigating.

Figure 1: An overview of events

Internal reconnaissance and encryption – sometimes referred to as detonation – took place late at night local time. This may have been strategic on the part of the attackers, as the number of security professionals actively monitoring the network was probably lower, slowing the speed of the organization’s response. Endpoint defenses did not prevent the threat – likely indicating that this was a slightly modified strain of the Eking ransomware that was able to bypass these signature-based tools.

While Darktrace provides complete coverage across email, IoT, and cloud environments, business challenges or segmentation sometimes prevent security teams from obtaining full visibility across their organization. However, even when working with imperfect data and suboptimal coverage, Cyber AI still identified this threat as it emerged.

AI Analyst coverage

When the first model breach occurred, this triggered Darktrace’s Cyber AI Analyst to launch a real-time investigation into the events as they unfolded. Piecing together the lateral movement and the later encryption, the technology recognized that these separate events were part of a wider security narrative. It surfaced an incident summary and several key metrics for the security team to review and action a response.

Figure 2: Internal reconnaissance of the subnet over a number of sensitive ports

Figure 3: Encryption phase of the attack

Figure 4: A graph of connections and unusual activity demonstrating how significant of a deviation this activity was from normal device behavior

Off the shelf: The commercialization of cyber-crime

This incident demonstrates how the rise in Ransomware-as-a-Service is allowing lower-level threat actors to access sophisticated strains of ransomware as well as novel variants of well-known attacks. The cyber-crime market is estimated to be worth $1.6 billion, and this figure is only likely to rise as the relatively new ‘industry’ matures. As a result, the potential perpetrators of advanced cyber-attacks like the one detailed above are no longer confined to professional cyber-criminal rings, who have outsourced their tactics, techniques and procedures to a wider range of threat actors willing to pay the right price. As lower-level threat actors get access, more organizations will find themselves targeted by increasingly sophisticated threats.

Just this week, Darktrace observed a high-profile example of RaaS in a Sodinokibi ransomware attack that hit a retail organization in the US. The infected device engaged in anomalous administrative activities before writing an unusual executable file, sharing it with other internal locations and then encrypting multiple files on the network and writing its own ransom note files.

With ransomware attacks continuing to target organizations large and small, security teams are fundamentally changing their approach to cyber defense, turning to artificial intelligence to stop attacks that other tools miss. Without relying on pre-defined rules and signatures, Cyber AI learns a sense of ‘self’ for a unique organization to detect and respond to anomalous activity as soon as it occurs.

Fight back with Autonomous Response

Threat actors know that deploying ransomware at weekends or at night is more likely to succeed because an organization’s response time is typically slower. Darktrace’s Autonomous Response operates around the clock, taking a targeted and proportionate response to contain malicious activity wherever it occurs, whether in the network, email, or in cloud and SaaS applications.

Had Darktrace Antigena been deployed at this government in APAC, it would have taken action at the first stage of the attack – as the initial scanning took place – and prevented the malware from ever reaching the encryption stage. However, in this case, when the security team returned to the office the next morning, they were still able to act faster than they otherwise would have and limit the damage, thanks to the fully-investigated incident and actionable intelligence of the Cyber AI Analyst’s AI-powered investigations.

Thanks to Darktrace analyst Brian Evans for his insights on the above threat find.

Learn more about Autonomous Response

IoCs:

IoCComment.ekingEking encryption extension

Darktrace model detections:

  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Anomalous Connection / Unusual Internal Remote Desktop
  • Device / RDP Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

April 30, 2025

Boosting Security with Azure Virtual Network TAP Traffic Mirroring

Man sitting at computerDefault blog imageDefault blog image

We are thrilled to announce that Darktrace is a launch partner for the Public Preview of Microsoft Azure Virtual Network Terminal Access Point (TAP). As Microsoft's 2024 UK Partner of the Year, we continue to innovate alongside Microsoft to deliver proactive cyber protection tailored to every organization.

Enhanced Defense Across the Modern Network

Modern networks are expanding far beyond on-premises into virtual environments, cloud and hybrid networks. More than 50% of incidents will come from cloud network activity by 2029, meaning defenders need a solution that can level the playing field against complex attacks that traverse multiple areas of a digital estate, including north-south and east-west traffic.

With Azure Virtual Network TAP, Darktrace’s self-learning AI gains seamless access to granular packet data in hybrid environments. This integration helps our Cyber AI platform build a comprehensive understanding of a customers’ Azure network. Microsoft's recent enhancement allows Virtual Network TAP to mirror the full throughput of VMs without impacting VM bandwidth, enabling agentless Cyber AI defense across these instances.

Darktrace's Cyber AI provides real-time visibility and adaptive, autonomous defense for your Microsoft security strategy. Our platform continuously learns the normal behavior of every user, device, and workload in your environment. This deep understanding of usual 'patterns of life' enables Darktrace to detect subtle deviations that indicate threats, from account takeovers to critical misconfigurations.

Our bespoke, real-time knowledge of usual activity allows Darktrace to identify unknown and unpredictable threats that bypass policy-based defenses—without relying on rules, signatures, or prior assumptions. This approach is a powerful compliment to Microsoft’s unprecedented threat intelligence.

Expanding Azure Virtual Network TAP

Azure Virtual Network TAP allows continuous streaming of virtual machine network traffic, which customers can leverage for Darktrace’s AI-driven threat detection and investigation. Darktrace / NETWORK passively ingests traffic from on-premises, virtual, cloud, hybrid environments, and remote devices, analyzing both encrypted and decrypted packets to uncover unusual activity in real-time. Unlike other NDR vendors that process data in the cloud, our industry-leading Self-Learning AI is deployed locally and trained solely on your data, ensuring tailored security outcomes without compromising privacy.

Benefits to Darktrace Customers

Darktrace customers will experience enhanced security through deeper insights into network traffic, enabling more accurate threat detection and response. The ability to mirror full VM throughput without affecting bandwidth ensures optimal performance, while agentless defense reduces barrier to entry and simplifies management. Customers benefit from proactive protection by continuously monitoring and analyzing traffic to identify and mitigate threats before they cause harm. Additionally, seamless integration with existing Azure environments leverages the power of Darktrace’s AI for enhanced security.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

/

April 29, 2025

MFA Under Attack: AiTM Phishing Kits Abusing Legitimate Services

fingerprintDefault blog imageDefault blog image

In late 2024 and early 2025, the Darktrace Security Operations Center (SOC) investigated alerts regarding separate cases of Software-as-a-Service (SaaS) account compromises on two customer environments that presented several similarities, suggesting they were part of a wider phishing campaign.

This campaign was found to leverage the project collaboration and note-taking application, Milanote, and the Tycoon 2FA phishing kit.

Legitimate services abused

As highlighted in Darktrace's 2024 Annual Threat Report [1], threat actors are abusing legitimate services, like Milanote, in their phishing campaigns. By leveraging these trusted platforms and domains, malicious actors can bypass traditional security measures, making their phishing emails appear benign and increasing the likelihood of successful attacks.

Darktrace categorizes these senders and platforms as free content senders. These services allow users to send emails containing custom content (e.g., files) from fully validated, fixed service address belonging to legitimate corporations. Although some of these services permit full body and subject customization by attackers, the structure of these emails is generally consistent, making it challenging to differentiate between legitimate and malicious emails.

What is Tycoon 2FA?

Tycoon 2FA is an Adversary-in-the-Middle (AitM) phishing kit, first seen in August 2023 and distributed via the Phishing-as-a-Service (PhaaS) model [2]. It targets multi-factor authentication (MFA) by intercepting credentials and MFA tokens during authentication on fake Microsoft or Google login pages. The attacker captures session cookies after MFA is completed, allowing them to replay the session and access the user account, even if credentials are reset. The rise in MFA use has increased the popularity of AitM phishing kits like Tycoon 2FA and Mamba 2FA, another AiTM phishing kit investigated by Darktrace.

Initial access via phishing email

At the beginning of 2025, Darktrace observed phishing emails leveraging Milanote being sent to multiple internal recipients in an organization. In this attack, the same email was sent to 19 different users, all of which were held by Darktrace.

The subject line of the emails mentioned both a legitimate internal user of the company, the company name, as well as a Milanote board regarding a “new agreement” in German. It is a common social engineering technique to mention urgent matters, such as unpaid invoices, expired passwords, or awaiting voicemails, in the subject line to prompt immediate action from the user. However, this tactic is now widely covered in phishing awareness training, making users more suspicious of such emails. In this case, while the subject mentioned a “new agreement,” likely raising the recipient’s curiosity, the tone remained professional and not overly alarming. Additionally, the mention of a colleague and the standardized language typical of free content sender emails further helped dispel concerns regarding the email.

These emails were sent by the legitimate address support@milanote[.]com and referenced "Milanote" in the personal field of the header but originated from the freemail address “ahnermatternk.ef.od.13@gmail[.]com”. Darktrace / EMAIL recognized that none of the recipients had previously received a file share email from Milanote, making this sender unfamiliar in the customer's email environment

The emails contained several benign links to legitimate Milanote endpoints (including an unsubscribe link) which were not flagged by Darktrace. However, they also included a malicious link designed to direct recipients to a pre-filled credential harvesting page hosted on Milanote, prompting them to register for an account. Despite not blocking the legitimate Milanote links in the same email, Darktrace locked the malicious link, preventing users from visiting the credential harvester.

Credential harvesting page sent to recipients, as seen in. sandbox environment.
Figure 1: Credential harvesting page sent to recipients, as seen in. sandbox environment.

Around one minute later, one recipient received a legitimate email from Milanote confirming their successful account registration, indicating they had accessed the phishing page. This email had a lower anomaly score and was not flagged by Darktrace / EMAIL because, unlike the first email, it did not contain any suspicious links and was a genuine account registration notification. Similarly, in the malicious Milanote email, only the link leading to the phishing page was blocked, while the benign and legitimate Milanote links remained accessible, demonstrating Darktrace’s precise and targeted actioning.

A legitimate and a malicious Milanote email received by one recipient.
Figure 2: A legitimate and a malicious Milanote email received by one recipient.

Around the same time, Darktrace / NETWORK observed the same user’s device making DNS query for the domain name “lrn.ialeahed[.]com” , which has been flagged as a Tycoon 2FA domain [2], suggesting the use of this phishing platform.

Once the user had entered their details in the credential harvester, it is likely that they were presented a document hosted on Milanote that contained the final payload link – likely hidden behind text instructing users to access a “new agreement” document.

External research indicates that the user was likely directed to a Cloudflare Turnstile challenge meant to reroute unwanted traffic, such as automated security scripts and penetration testing tools [2] [3]. After these checks and other background processes are completed, the user is directed to the final landing page. In this case, it was likely a fake login prompt hosted on the attacker’s server, where the user is asked to authenticate to their account using MFA. By burrowing malicious links and files in this manner, threat actors can evade analysis by traditional security email gateways, effectively bypassing their protection.

Darktrace’s analysis of the structure and word content of the phishing emails resulted in an 82% probability score that the email was malicious, and the email further received a 67% phishing inducement score, representing how closely the structure and word content of the emails compared to typical phishing emails.

All these unusual elements triggered multiple alerts in Darktrace / EMAIL, focusing on two main suspicious aspects: a new, unknown sender with no prior correspondence with the recipients or the environment, and the inclusion of a link to a previously unseen file storage solution.

Milanote phishing email as seen within Darktrace / EMAIL.
Figure 3: Milanote phishing email as seen within Darktrace / EMAIL.

After detecting the fifth email, the “Sender Surge” model alert was triggered in Darktrace / EMAIL due to a significant number of recipients being emailed by this new suspicious sender in a short period. These recipients were from various departments across the customer’s organization, including sales, marketing, purchasing, and production. Darktrace / EMAIL determined that the emails were sent to a highly unusual group of internal recipients, further raising doubts about the business legitimacy.

Darktrace / EMAIL suggested actions to contain the attack by holding all Milanote phishing emails back from recipient’s inboxes, except for the detailed email with locked links. However, autonomous actions were not enabled at the time, allowing the initial email to reach recipients' inboxes, providing a brief window for interaction. Unfortunately, during this window, one recipient clicked on the Milanote payload link, leading to the compromise of their account.

SaaS account takeover

About three minutes after the malicious Milanote email was received, Darktrace / IDENTITY detected an unusual login to the email recipient’s SaaS account. The SaaS actor was observed accessing files from their usual location in Germany, while simultaneously, a 100% rare login occurred from a location in the US that had never been seen in the customer’s environment before. This login was also flagged as suspicious by Microsoft 365, triggering a 'Conditional Access Policy' that required MFA authentication, which was successfully completed.

Tycoon 2FA adnimistration panel login page dated from October 2023 [3].
Figure 4: Tycoon 2FA adnimistration panel login page dated from October 2023 [3].

Despite the successful authentication, Darktrace / IDENTITY recognized that the login from this unusual location, coupled with simultaneous activity in another geographically distant location, were highly suspicious. Darktrace went on to observe MFA-validated logins from three separate US-based IP addresses: 89.185.80[.]19, 5.181.3[.]68, and 38.242.7[.]252. Most of the malicious activity was performed from the latter, which is associated with the Hide My Ass (HMA) VPN network [5].

Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Figure 5: Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Darktrace’s detection of the suspicious login following successful MFA authentication.
Figure 6: Darktrace’s detection of the suspicious login following successful MFA authentication.

Following this, the malicious actor accessed the user’s inbox and created a new mailbox rule named “GTH” that deleted any incoming email containing the string “milanote” in the subject line or body. Rules like this are a common technique used by attackers to leverage compromised accounts for launching phishing campaigns and concealing replies to phishing emails that might raise suspicions among legitimate account holders. Using legitimate, albeit compromised, accounts to send additional phishing emails enhances the apparent legitimacy of the malicious emails. This tactic has been reported as being used by Tycoon 2FA attackers [4].

The attacker accessed over 140 emails within the legitimate user’s inbox, including both the inbox and the “Sent Items” folder. Notably, the attacker accessed five emails in the “Sent Items” folder and modified their attachments. These emails were mainly related to invoices, suggesting the threat actor may have been looking to hijack those email threads to send fake invoices or replicate previous invoice emails.

Darktrace’s Cyber AI AnalystTM launched autonomous investigations into the individual events surrounding this suspicious activity. It connected these separate events into a single, broad account takeover incident, providing the customer with a clearer view of the ongoing compromise.

Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Figure 7: Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Cyber AI Analyst investigation of suspicious activities performed by the attacker.
Figure 8: Cyber AI Analyst investigation of suspicious activities performed by the attacker.

Darktrace's response

Within three minutes of the first unusual login alert, Darktrace’s Autonomous Response intervened, disabling the compromised user account for two hours.

As the impacted customer was subscribed to the Managed Threat Detection Service, Darktrace’s SOC team investigated the activity further and promptly alerted the customer’s security team. With the user’s account still disabled by Autonomous Response, the attack was contained, allowing the customer’s security team valuable time to investigate and remediate. Within ten minutes of receiving the alert from Darktrace’s SOC, they reset the user’s password, closed all active SaaS sessions, and deleted the malicious email rule. Darktrace’s SOC further supported the customer through the Security Operations Service Support service by providing information about the data accessed and identifying any other affected users.

Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity
Figure 9: Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity.

A wider Milanote phishing campaign?

Around a month before this compromise activity, Darktrace alerted another customer to similar activities involving two compromised user accounts. These accounts created new inbox rules named “GFH” and “GVB” to delete all incoming emails containing the string “milanote” in their subject line and/or body.

The phishing emails that led to the compromise of these user accounts were similar to the ones discussed above. Specifically, these emails were sent via the Milanote platform and referenced a “new agreement” (in Spanish) being shared by a colleague. Additionally, the payload link included in the phishing emails showed the same UserPrincipalName (UPN) attribute (i.e., click?upn=u001.qLX9yCzR), which has been seen in other Milanote phishing emails leveraging Tycoon 2FA reported by OSINT sources [6]. Interestingly, in some cases, the email also referenced a “new agreement” in Portuguese, indicating a global campaign.

Based on the similarities in the rule’s naming convention and action, as well as the similarities in the phishing email subjects, it is likely that these were part of the same campaign leveraging Milanote and Tycoon 2FA to compromise user accounts. Since its introduction, the Tycoon 2FA phishing kit has undergone several enhancements to increase its stealth and obfuscation methods, making it harder for security tools to detect. For example, the latest versions contain special source code to obstruct web page analysis by defenders, prevent users from copying meaningful text from the phishing webpages, and disable the right-click menu to prevent offline analysis [4].

Conclusion

Threat actors are continually employing new methods to bypass security detection tools and measures. As highlighted in this blog, even robust security mechanisms like MFA can be compromised using AitM phishing kits. The misuse of legitimate services such as Milanote for malicious purposes can help attackers evade traditional email security solutions by blurring the distinction between legitimate and malicious content.

This is why security tools based on anomaly detection are crucial for defending against such attacks. However, user awareness is equally important. Delays in processing can impact the speed of response, making it essential for users to be informed about these threats.

Appendices

References

[1] https://www.darktrace.com/resources/annual-threat-report-2024

[2] https://www.validin.com/blog/tycoon_2fa_analyzing_and_hunting_phishing-as-a-service_domains

[3] https://blog.sekoia.io/tycoon-2fa-an-in-depth-analysis-of-the-latest-version-of-the-aitm-phishing-kit/#h-iocs-amp-technical-details

[4] https://blog.barracuda.com/2025/01/22/threat-spotlight-tycoon-2fa-phishing-kit

[5] https://spur.us/context/38.242.7.252    

[6] https://any.run/report/5ef1ac94e4c6c1dc35579321c206453aea80d414108f9f77abd2e2b03ffbd658/be5351d9-53c0-470b-8708-ee2e29300e70

Indicators of Compromise (IoCs)

IoC         Type      Description + Probability

89.185.80[.]19 - IP Address - Malicious login

5.181.3[.]68 - IP Address -Malicious login

38.242.7[.]252 - IP Address - Malicious login and new email inbox rule creation -  Hide My Ass VPN

lrn.ialeahed[.]com – Hostname - Likely Tycoon 2FA domain

Darktrace Model Detections

Email alerts

Platforms / Free Content Sender + High Sender Surge

Platforms / Free Content Sender + Sender Surge

Platforms / Free Content Sender + Unknown Initiator

Platforms / Free Content Sender

Platforms / Free Content Sender + First Time Recipient

Unusual / New Sender Surge

Unusual / Sender Surge

Antigena Anomaly / High Antigena Anomaly

Association / Unknown Sender

History / New Sender

Link / High Rarity Link to File Storage

Link/ Link To File Storage

Link / Link to File Storage + Unknown Sender

Link / Low Link Association

Platforms / Free Content Sender + First Time Initiator

Platforms / Free Content Sender + Unknown Initiator + Freemail

Platforms / Free Content Sender Link

Unusual / Anomalous Association

Unusual / Unlikely Recipient Association

IDENTITY

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Access / MailItemsAccessed from Rare Endpoint

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Compliance / Anomalous New Email Rule

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block

Antigena / SaaS / Antigena Unusual Activity Block

Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block

Cyber AI Analyst Incident

Possible Hijack of Office365 Account

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

INITIAL ACCESS - Phishing

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

RESOURCE DEVELOPMENT - Compromise Accounts

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI