Blog
/
/
August 6, 2020

Ransomware-As-A-Service Threat: Eking Targets Government

Discover how Eking ransomware targeted a government organization in APAC. Learn about ransomware as a service & the cyber AI technology that stopped the threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Aug 2020

Despite being widely recognized as a serious threat for a number of years, ransomware continues to persist. The total global cost of this threat vector is projected to reach $20 billion by 2021. With this level of financial return for attackers, it is no wonder that they continue to develop new strains of ransomware and advance their techniques to bypass security tools and ensure their campaigns are successful.

In the last few weeks, Darktrace’s AI has detected an attacker abusing off-the-shelf products to deploy ransomware at an African retailer, along with high-profile WastedLocker and Emotet attacks. Here, we look at Eking ransomware – a variant of the Phobos ransomware family – that targeted a government organization in the APAC region.

This attack was likely an example of Ransomware-as-a-Service (RaaS); a particularly concerning threat for security teams as it allows lower-level actors to get hold of sophisticated malware. This blog post breaks down Eking ransomware in detail, showing how Cyber AI enabled the defenders to recognize the anomalous behavior as soon as it occurred and stop the threat from advancing – and causing damage. It also shows how Darktrace’s Cyber AI Analyst autonomously investigated the broader security incident, generating an easy-to-understand and actionable report as the activity unfolded.

An overview of the attack

An internal server was infected with Eking ransomware via an attack vector outside of Darktrace’s visibility, most likely an employee clicking a malicious link within an email. Antigena Email would likely have identified suspicious characteristics of the email and stopped it from reaching employees’ inboxes, preventing the threat at the first hurdle. However, in this instance, the customer had only deployed Cyber AI across their network. This still enabled Darktrace’s Immune System to identify lateral movement and encryption activity indicative of ransomware.

The infected device began engaging in internal reconnaissance activity on a single internal subnet. This included SMB enumeration via the SRVSVC and winreg pipes, as well as extensive scanning over 10 commonly exploited ports. Indicators of Nmap were also detected during this phase of the attack.

About four and a half hours after this scanning concluded, the infected server began encrypting files on a second server. The device transitioned from making just a few internal connections per day to making thousands in less than an hour. This dramatic shift in behavior was immediately detected by Darktrace’s AI as highly threatening and the Cyber AI Analyst began autonomously investigating.

Figure 1: An overview of events

Internal reconnaissance and encryption – sometimes referred to as detonation – took place late at night local time. This may have been strategic on the part of the attackers, as the number of security professionals actively monitoring the network was probably lower, slowing the speed of the organization’s response. Endpoint defenses did not prevent the threat – likely indicating that this was a slightly modified strain of the Eking ransomware that was able to bypass these signature-based tools.

While Darktrace provides complete coverage across email, IoT, and cloud environments, business challenges or segmentation sometimes prevent security teams from obtaining full visibility across their organization. However, even when working with imperfect data and suboptimal coverage, Cyber AI still identified this threat as it emerged.

AI Analyst coverage

When the first model breach occurred, this triggered Darktrace’s Cyber AI Analyst to launch a real-time investigation into the events as they unfolded. Piecing together the lateral movement and the later encryption, the technology recognized that these separate events were part of a wider security narrative. It surfaced an incident summary and several key metrics for the security team to review and action a response.

Figure 2: Internal reconnaissance of the subnet over a number of sensitive ports

Figure 3: Encryption phase of the attack

Figure 4: A graph of connections and unusual activity demonstrating how significant of a deviation this activity was from normal device behavior

Off the shelf: The commercialization of cyber-crime

This incident demonstrates how the rise in Ransomware-as-a-Service is allowing lower-level threat actors to access sophisticated strains of ransomware as well as novel variants of well-known attacks. The cyber-crime market is estimated to be worth $1.6 billion, and this figure is only likely to rise as the relatively new ‘industry’ matures. As a result, the potential perpetrators of advanced cyber-attacks like the one detailed above are no longer confined to professional cyber-criminal rings, who have outsourced their tactics, techniques and procedures to a wider range of threat actors willing to pay the right price. As lower-level threat actors get access, more organizations will find themselves targeted by increasingly sophisticated threats.

Just this week, Darktrace observed a high-profile example of RaaS in a Sodinokibi ransomware attack that hit a retail organization in the US. The infected device engaged in anomalous administrative activities before writing an unusual executable file, sharing it with other internal locations and then encrypting multiple files on the network and writing its own ransom note files.

With ransomware attacks continuing to target organizations large and small, security teams are fundamentally changing their approach to cyber defense, turning to artificial intelligence to stop attacks that other tools miss. Without relying on pre-defined rules and signatures, Cyber AI learns a sense of ‘self’ for a unique organization to detect and respond to anomalous activity as soon as it occurs.

Fight back with Autonomous Response

Threat actors know that deploying ransomware at weekends or at night is more likely to succeed because an organization’s response time is typically slower. Darktrace’s Autonomous Response operates around the clock, taking a targeted and proportionate response to contain malicious activity wherever it occurs, whether in the network, email, or in cloud and SaaS applications.

Had Darktrace Antigena been deployed at this government in APAC, it would have taken action at the first stage of the attack – as the initial scanning took place – and prevented the malware from ever reaching the encryption stage. However, in this case, when the security team returned to the office the next morning, they were still able to act faster than they otherwise would have and limit the damage, thanks to the fully-investigated incident and actionable intelligence of the Cyber AI Analyst’s AI-powered investigations.

Thanks to Darktrace analyst Brian Evans for his insights on the above threat find.

Learn more about Autonomous Response

IoCs:

IoCComment.ekingEking encryption extension

Darktrace model detections:

  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Anomalous Connection / Unusual Internal Remote Desktop
  • Device / RDP Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous File / Internal / Additional Extension Appended to SMB File

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI