What is Remote Desktop Protocol (RDP)? RDP Attack Analysis
In this case study, Darktrace analyzes how a rapid Remote Desktop Protocol (RDP) attack evolved to lateral movement just seven hours within an exposed server.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Share
16
Aug 2021
Late on a Saturday evening, a physical security company in the US was targeted by an attack after cyber-criminals exploited an exposed RDP server. By Sunday, all the organization’s internal services had become unusable. This blog will unpack the attack and the dangers of open RDP ports.
With the shift to remote working, IT teams have relied on remote access tools to manage corporate devices and keep the show running. Remote Desktop Protocol (RDP) is a Microsoft protocol which enables administrators to access desktop computers. Since it gives the user complete control over the device, it is a valuable entry point for threat actors.
‘RDP shops’ selling credentials on the Dark Web have been around for years. xDedic, one of the most notorious crime forums which once boasted over 80,000 hacked servers for sale, was finally shut down by the FBI and Europol in 2019, five years after it had been founded. Selling RDP access is a booming industry because it provides immediate entry into an organization, removing the need to design a phishing email, develop malware, or manually search for zero-days and open ports. For less than $5, an attacker can purchase direct access to their target organization.
In the months following the COVID-19 outbreak, the number of exposed RDP endpoints increased by 127%. RDP usage surged as companies adapted to teleworking conditions, and it became almost impossible for traditional security tools to distinguish between the daily legitimate application of RDP and its exploitation. This led to a dramatic spike in successful server-side attacks. According to the UK’s National Cyber Security Centre, RDP is now the single most common attack vector used by cyber-criminals – particularly ransomware gangs.
Breakdown of an RDP compromise
Initial intrusion
In this real-world attack, the target organization had around 7,500 devices active, one of which was an Internet-facing server with TCP port 3389 – the default port for RDP – open. In other words, the port was configured to accept network packets.
Darktrace detected a successful incoming RDP connection from a rare external endpoint, which utilized a suspicious authentication cookie. Given that the device was subject to a large volume of external RDP connections, it is likely the attacker brute-forced their way in, though they could have used an exploit or bought credentials off the Dark Web.
As incoming connections on port 3389 to this service were commonplace and expected as part of normal business, the connection was not flagged by any other security tool.
Figure 1: Timeline of the attack — the total dwell time was one day
Internal reconnaissance
Following the initial compromise, the device was seen engaging in network scanning activity within its own subnet to escalate access. After the scan, the device made Windows Management Instrumentation (WMI) connections to multiple devices over DCE-RPC, which triggered multiple Darktrace alerts.
Figure 2: The graph highlights spikes in unusual activity events along with an accompanying large volume of model breaches
Command and control (C2)
The device then made a new RDP connection on a non-standard port, using an administrative authentication cookie to an endpoint which had never been seen on the network. Tor connections were observed after this point, indicating potential C2 communication.
Figure 3: Cyber AI Analyst - Darktrace's AI investigation tool - breaks down the different stages of the incident
Lateral movement
The attacker then attempted lateral movement via SMB service control pipes and PsExec to five devices within the breach device’s subnet, which were likely identified during the network scan.
By using native Windows admin tools (PsExec, WMI, and svcctl) for lateral movement, the attacker managed to ‘live off the land’, evading detection from the rest of the security stack.
Ask the Expert
The organization’s own internal services were unavailable, so they reached out to Darktrace’s 24/7 Ask the Expert service. Darktrace’s cyber experts quickly determined the scope and nature of the compromise using the AI and began the remediation process. As a result, the threat was neutralized before the attacker could achieve their objectives, which may have included crypto-mining, deploying ransomware, or exfiltrating sensitive data.
RDP vulnerability: Dangers of exposed servers
Prior to the events described above, Darktrace had observed incoming connections on RDP and SQL from a large variety of rare external endpoints, suggesting that the server had been probed many times before. When unnecessary services are left open to the Internet, compromise is inevitable – it is simply a matter of time.
This is especially true of RDP. In this case, the attacker managed to successfully carry out reconnaissance and open external communication all through their initial access to the RDP port. Threat actors are always looking for a way in, so what could be considered a compliance issue can easily, and quickly, devolve into compromise.
Out of control remote control
The attack happened out of hours – at a time when the security team were off work enjoying their Saturday evenings – and it progressed at remarkable speed, escalating from initial intrusion to lateral movement in less than seven hours. It is very common for attackers to exploit these human vulnerabilities, moving fast and remaining undetected until the IT team are back at their desks on Monday morning.
It is for this reason that a security solution which does not sleep – and which can detect and autonomously respond to threats around the clock – is critical. Self-Learning AI can keep up with threats which escalate at machine speed, stopping them at every turn.
Thanks to Darktrace analyst Steven Sosa for his insights on the above threat find.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
How Darktrace Could Have Stopped a Surprise DDoS Incident
Learn how Darktrace could revolutionize DDoS defense, enabling companies to stop threats without 24/7 monitoring. Read more about how we thwart attacks!
SEO Poisoning and Fake PuTTY sites: Darktrace’s Investigation into the Oyster backdoor
What is SEO poisoning?
Search Engine Optimization (SEO) is the legitimate marketing technique of improving the visibility of websites in organic search engine results. Businesses, publishers, and organizations use SEO to ensure their content is easily discoverable by users. Techniques may include optimizing keywords, creating backlinks, or even ensuring mobile compatibility.
SEO poisoning occurs when attackers use these same techniques for malicious purposes. Instead of improving the visibility of legitimate content, threat actors use SEO to push harmful or deceptive websites to the top of search results. This method exploits the common assumption that top-ranking results are trustworthy, leading users to click on URLs without carefully inspecting them.
As part of SEO poisoning, the attacker will first register a typo-squatted domain, slightly misspelled or otherwise deceptive versions of real software sites, such as putty[.]run or puttyy[.]org. These sites are optimized for SEO and often even backed by malicious Google ads, increasing the visibility when users search for download links. To achieve that, threat actors may embed pages with strategically chosen, high-value keywords or replicate content from reputable sources to elevate the domain’s perceived authority in search engine algorithms [4]. In more advanced operations, these tactics are reinforced with paid promotion, such as Google ads, enabling malicious domains to appear above organic search results as sponsored links. This placement not only accelerates visibility but also impacts an unwarranted sense of legitimacy to unsuspected users.
Once a user lands on one of these fake pages, they are presented with what looks like a legitimate software download option. Upon clicking the download indicator, the user will be redirected to another separate domain that actually hosts the payload. This hosting domain is usually unrelated to the nominally referenced software. These third-party sites can involve recently registered domains but may also include legitimate websites that have been recently compromised. By hosting malware on a variety of infrastructure, attackers can prolong the availability of distribution methods for these malicious files before they are taken down.
What is the Oyster backdoor?
Oyster, also known as Broomstick or CleanUpLoader, is a C++ based backdoor malware first identified in July 2023. It enables remote access to infected systems, offering features such as command-line interaction and file transfers.
Oyster has been widely adopted by various threat actors, often as an entry point for ransomware attacks. Notable examples include Vanilla Tempest and Rhysida ransomware groups, both of which have been observed leveraging the Oyster backdoor to enhance their attack capabilities. Vanilla Tempest is known for using Oyster’s stealth persistence to maintain long-term access within targeted networks, often aligning their operations with ransomware deployment [5]. Rhysida has taken this further by deploying Oyster as an initial access tool in ransomware campaigns, using it to conduct reconnaissance and move laterally before executing encryption activities [6].
Once installed, the backdoor gathers basic system information before communicating with a command-and-control (C2) server. The malware largely relies on a ‘cmd.exe’ instance to execute commands and launch other files [1].
In previous SEO poisoning cases, the file downloaded from the fake pages is not just PuTTY, but a trojanized version that includes the stealthy Oyster backdoor. PuTTY is a free and open-source terminal emulator for Windows that allows users to connect to remote servers and devices using protocols like SSH and Telnet. In the recent campaign, once a user visits the fake software download site, ranked highly through SEO poisoning, the malicious payload is downloaded through direct user interaction and subsequently installed on the local device, initiating the compromise. The malware then performs two actions simultaneously: it installs a fully functional version of PuTTY to avoid user suspicion, while silently deploying the Oyster backdoor. Given PuTTY’s nature, it is prominently used by IT administrators with highly privileged account as opposed to standard users in a business, possibly narrowing the scope of the targets.
Oyster’s persistence mechanism involves creating a Windows Scheduled Task that runs every few minutes. Notably, the infection uses Dynamic Link Library (DLL) side loading, where a malicious DLL, often named ‘twain_96.dll’, is executed via the legitimate Windows utility ‘rundll32.exe’, which is commonly used to run DLLs [2]. This technique is frequently used by malicious actors to blend their activity with normal system operations.
Darktrace’s Coverage of the Oyster Backdoor
In June 2025, security analysts at Darktrace identified a campaign leveraging search engine manipulation to deliver malware masquerading as the popular SSH client, PuTTY. Darktrace / NETWORK’s anomaly-based detection identified signs of malicious activity, and when properly configured, its Autonomous Response capability swiftly shut down the threar before it could escalate into a more disruptive attack. Subsequent analysis by Darktrace’s Threat Research team revealed that the payload was a variant of the Oyster backdoor.
The first indicators of an emerging Oyster SEO campaign typically appeared when user devices navigated to a typosquatted domain, such as putty[.]run or putty app[.]naymin[.]com, via a TLS/SSL connection.
Figure 1: Darktrace’s detection of a device connecting to the typosquatted domain putty[.]run.
The device would then initiate a connection to a secondary domain that hosts the malicious installer, likely triggered by user interaction with redirect elements on the landing page. This secondary site may not have any immediate connection to PuTTY itself but is instead a hijacked blog, a file-sharing service, or a legitimate-looking content delivery subdomain.
Figure 2: Darktrace’s detection of the device making subsequent connections to the payload domain.
Following installation, multiple affected devices were observed attempting outbound connectivity to rare external IP addresses, specifically requesting the ‘/secure’ endpoint as noted within the declared URIs. After the initial callback, the malware continued communicating with additional infrastructure, maintaining its foothold and likely waiting for tasking instructions. Communication patterns included:
· Endpoints with URIs /api/kcehc and /api/jgfnsfnuefcnegfnehjbfncejfh
· Endpoints with URI /reg and user agent “WordPressAgent”, “FingerPrint” or “FingerPrintpersistent”
This tactic has been consistently linked to the Oyster backdoor, which has shown similar URI patterns across multiple campaigns [3].
Darktrace analysts also noted the sophisticated use of spoofed user agent strings across multiple investigated customer networks. These headers, which are typically used to identify the application making an HTTP request, are carefully crafted to appear benign or mimic legitimate software. One common example seen in the campaign is the user agent string “WordPressAgent”. While this string references a legitimate web application or plugin, it does not appear to correspond to any known WordPress services or APIs. Its inclusion is most likely designed to mimic background web traffic commonly associated with WordPress-based content management systems.
Figure 3: Cyber AI Analyst investigation linking the HTTP C2 activity.
Case-Specific Observations
While the previous section focused on tactics and techniques common across observed Oyster infections, a closer examination reveals notable variations and unique elements in specific cases. These distinct features offer valuable insights into the diverse operational approaches employed by threat actors. These distinct features, from unusual user agent strings to atypical network behavior, offer valuable insights into the diverse operational approaches employed by the threat actors. Crucially, the divergence in post-exploitation activity reflects a broader trend in the use of widely available malware families like Oyster as flexible entry points, rather than fixed tools with a single purpose. This modular use of the backdoor reflects the growing Malware-as-a-Service (MaaS) ecosystem, where a single initial infection can be repurposed depending on the operator’s goals.
From Infection to Data Egress
In one observed incident, Darktrace observed an infected device downloading a ZIP file named ‘host[.]zip’ via curl from the URI path /333/host[.]zip, following the standard payload delivery chain. This file likely contained additional tools or payloads intended to expand the attacker’s capabilities within the compromised environment. Shortly afterwards, the device exhibited indicators of probable data exfiltration, with outbound HTTP POST requests featuring the URI pattern: /upload?dir=NAME_FOLDER/KEY_KEY_KEY/redacted/c/users/public.
This format suggests the malware was actively engaged in local host data staging and attempting to transmit files from the target machine. The affected device, identified as a laptop, aligns with the expected target profile in SEO poisoning scenarios, where unsuspecting end users download and execute trojanized software.
Irregular RDP Activity and Scanning Behavior
Several instances within the campaign revealed anomalous or unexpected Remote Desktop Protocol (RDP) sessions occurring shortly after DNS requests to fake PuTTY domains. Unusual RDP connections frequently followed communication with Oyster backdoor C2 servers. Additionally, Darktrace detected patterns of RDP scanning, suggesting the attackers were actively probing for accessible systems within the network. This behavior indicates a move beyond initial compromise toward lateral movement and privilege escalation, common objectives once persistence is established.
The presence of unauthorized and administrative RDP sessions following Oyster infections aligns with the malware’s historical role as a gateway for broader impact. In previous campaigns, Oyster has often been leveraged to enable credential theft, lateral movement, and ultimately ransomware deployment. The observed RDP activity in this case suggests a similar progression, where the backdoor is not the final objective but rather a means to expand access and establish control over the target environment.
Cryptic User Agent Strings?
In multiple investigated cases, the user agent string identified in these connections featured formatting that appeared nonsensical or cryptic. One such string containing seemingly random Chinese-language characters translated into an unusual phrase: “Weihe river is where the water and river flow.” Legitimate software would not typically use such wording, suggesting that the string was intended as a symbolic marker rather than a technical necessity. Whether meant as a calling card or deliberately crafted to frame attribution, its presence highlights how subtle linguistic cues can complicate analysis.
Figure 4: Darktrace’s detection of malicious connections using a user agent with randomized Chinese-language formatting.
Strategic Implications
What makes this campaign particularly noteworthy is not simply the use of Oyster, but its delivery mechanism. SEO poisoning has traditionally been associated with cybercriminal operations focused on opportunistic gains, such as credential theft and fraud. Its strength lies in casting a wide net, luring unsuspecting users searching for popular software and tricking them into downloading malicious binaries. Unlike other campaigns, SEO poisoning is inherently indiscriminate, given that the attacker cannot control exactly who lands on their poisoned search results. However, in this case, the use of PuTTY as the luring mechanism possibly indicates a narrowed scope - targeting IT administrators and accounts with high privileges due to the nature of PuTTY’s functionalities.
This raises important implications when considered alongside Oyster. As a backdoor often linked to ransomware operations and persistent access frameworks, Oyster is far more valuable as an entry point into corporate or government networks than small-scale cybercrime. The presence of this malware in an SEO-driven delivery chain suggests a potential convergence between traditional cybercriminal delivery tactics and objectives often associated with more sophisticated attackers. If actors with state-sponsored or strategic objectives are indeed experimenting with SEO poisoning, it could signal a broadening of their targeting approaches. This trend aligns with the growing prominence of MaaS and the role of initial access brokers in today’s cybercrime ecosystem.
Whether the operators seek financial extortion through ransomware or longer-term espionage campaigns, the use of such techniques blurs the traditional distinctions. What looks like a mass-market infection vector might, in practice, be seeding footholds for high-value strategic intrusions.
Credit to Christina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)
Appendices
MITRE ATT&CK Mapping
· T1071.001 – Command and Control – Web Protocols
· T1008 – Command and Control – Fallback Channels
· T0885 – Command and Control – Commonly Used Port
· T1571 – Command and Control – Non-Standard Port
· T1176 – Persistence – Browser Extensions
· T1189 – Initial Access – Drive-by Compromise
· T1566.002 – Initial Access – Spearphishing Link
· T1574.001 – Persistence – DLL
Indicators of Compromise (IoCs)
· 85.239.52[.]99 – IP address
· 194.213.18[.]89/reg – IP address / URI
· 185.28.119[.]113/secure – IP address / URI
· 185.196.8[.]217 – IP address
· 185.208.158[.]119 – IP address
· putty[.]run – Endpoint
· putty-app[.]naymin[.]com – Endpoint
· /api/jgfnsfnuefcnegfnehjbfncejfh
· /api/kcehc
Darktrace Model Detections
· Anomalous Connection / New User Agent to IP Without Hostname
· Anomalous Connection / Posting HTTP to IP Without Hostname
· Compromise / HTTP Beaconing to Rare Destination
· Compromise / Large Number of Suspicious Failed Connections
· Compromise / Beaconing Activity to External Rare
· Compromise / Quick and Regular Windows HTTP Beaconing
· Device / Large Number of Model Alerts
· Device / Initial Attack Chain Activity
· Device / Suspicious Domain
· Device / New User Agent
· Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.
The benefits of bringing together network and email security
In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.
This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.
A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.
Technical advantages
Pre-alert intelligence: Gathering data before the threat strikes
Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.
By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.
That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.
This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.
Alert-related intelligence: Connecting the dots in real time
Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.
Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.
This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.
Operational advantages
Streamlining SecOps across teams
In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.
When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.
The outcome is more than convenience: it’s faster, more informed decision-making across the board.
Reducing time-to-meaning and enabling faster response
A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.
Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.
Commercial advantages
While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.
On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.
With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.
Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.