Blog
/
Network
/
December 6, 2023

How Darktrace Triumphed Over MyKings Botnet

Darktrace has provided full visibility over the MyKings botnet kill chain from the beginning of its infections to the eventual cryptocurrency mining activity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oluwatosin Aturaka
Analyst Team Lead, Cambridge
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Dec 2023

Botnets: A persistent cyber threat

Since their appearance in the wild over three decades ago, botnets have consistently been the attack vector of choice for many threat actors. The most prevalent of these attack vectors are distributed denial of service (DDoS) and phishing campaigns. Their persistent nature means that even if a compromised device in identified, attackers can continue to operate by using the additional compromised devices they will likely have on the target network. Similarly, command and control (C2) infrastructure can easily be restructured between infected systems, making it increasingly difficult to remove the infection.  

MyKings Botnet

One of the most prevalent and sophisticated examples in recent years is the MyKings botnet, also known as Smominru or DarkCloud. Darktrace has observed numerous cases of MyKings botnet compromises across multiple customer environments in several different industries as far back as August 2022. The diverse tactics, techniques, and procedures (TTPs) and sophisticated kill chains employed by MyKings botnet may prove a challenge to traditional rule and signature-based detections.

However, Darktrace’s anomaly-centric approach enabled it to successfully detect a wide-range of indicators of compromise (IoCs) related to the MyKings botnet and bring immediate awareness to customer security teams, as it demonstrated on the network of multiple customers between March and August 2023.

Background on MyKings Botnet

MyKings has been active and spreading steadily since 2016 resulting in over 520,000 infections worldwide.[1] Although verified attribution of the botnet remains elusive, the variety of targets and prevalence of crypto-mining software on affected devices suggests the threat group behind the malware is financially motivated. The operators behind MyKings appear to be highly opportunistic, with attacks lacking an obvious specific target industry. Across Darktrace’s customer base, the organizations affected were representative of multiple industries such as entertainment, mining, education, information technology, health, and transportation.

Given its longevity, the MyKings botnet has unsurprisingly evolved since its first appearance years ago. Initial analyses of the botnet showed that the primary crypto-related activity on infected devices was the installation of Monero-mining software. However, in 2019 researchers discovered a new module within the MyKings malware that enabled clipboard-jacking, whereby the malware replaces a user's copied cryptowallet address with the operator's own wallet address in order to siphon funds.[2]

Similar to other botnets such as the Outlaw crypto-miner, the MyKings botnet can also kill running processes of unrelated malware on the compromised hosts that may have resulted from prior infection.[3] MyKings has also developed a comprehensive set of persistence techniques, including: the deployment of bootkits, initiating the botnet immediately after a system reboot, configuring Registry run keys, and generating multiple Scheduled Tasks and WMI listeners.[4] MyKings have also been observed rotating tools and payloads over time to propagate the botnet. For example, some operators have been observed utilizing PCShare, an open-source remote access trojan (RAT) customized to conduct C2 services, execute commands, and download mining software[5].

Darktrace Coverage

Across observed customer networks between March and August 2023, Darktrace identified the MyKings botnet primarily targeting Windows-based servers that supports services like MySQL, MS-SQL, Telnet, SSH, IPC, WMI, and Remote Desktop (RDP).  In the initial phase of the attack, the botnet would initiate a variety of attacks against a target including brute-forcing and exploitation of unpatched vulnerabilities on exposed servers. The botnet delivers a variety of payloads to the compromised systems including worm downloaders, trojans, executable files and scripts.

This pattern of activity was detected across the network of one particular Darktrace customer in the education sector in early March 2023. Unfortunately, this customer did not have Darktrace RESPOND™ deployed on their network at the time of the attack, meaning the MyKings botnet was able to move through the cyber kill chain ultimately achieving its goal, which in this case was mining cryptocurrency.

Initial Access

On March 6, Darktrace observed an internet-facing SQL server receiving an unusually large number of incoming MySQL connections from the rare external endpoint 171.91.76[.]31 via port 1433. While it is not possible to confirm whether these suspicious connections represented the exact starting point of the infection, such a sudden influx of SQL connection from a rare external endpoint could be indicative of a malicious attempt to exploit vulnerabilities in the server's SQL database or perform password brute-forcing to gain unauthorized access. Given that MyKings typically spreads primarily through such targeting of internet-exposed devices, the pattern of activity is consistent with potential initial access by MyKings.[6]

Initial Command and Control

The device then proceeded to initiate a series of repeated HTTP connections between March 6 and March 10, to the domain www[.]back0314[.]ru (107.148.239[.]111). These connections included HTTP GET requests featuring URIs such as ‘/back.txt',  suggesting potential beaconing and C2 communication. The device continued this connectivity to the external host over the course of four days, primarily utilizing destination ports 80, and 6666. While port 80 is commonly utilized for HTTP connections, port 6666 is a non-standard port for the protocol. Such connectivity over non-standard ports can indicate potential detection evasion and obfuscation tactics by the threat actors.  During this time, the device also initiated repeated connections to additional malicious external endpoints with seemingly algorithmically generated hostnames such as pc.pc0416[.]xyz.

Darktrace UI image
Figure 1: Model breach showing details of the malicious domain generation algorithm (DGA) connections.

Tool Transfer

While this beaconing activity was taking place, the affected device also began to receive potential payloads from unusual external endpoints. On April 29, the device made an HTTP GET request for “/power.txt” to the endpoint 192.236.160[.]237, which was later discovered to have multiple open-source intelligence (OSINT) links to malware. Power.txt is a shellcode written in PowerShell which is downloaded and executed with the purpose of disabling Windows Defenders related functions.[7] After the initial script was downloaded (and likely executed), Darktrace went on to detect the device making a series of additional GET requests for several varying compressed and executable files. For example, the device made HTTP requests for '/pld/cmd.txt' to the external endpoint 104.233.224[.]173. In response the external server provided numerous files, including ‘u.exe’, and ‘upsup4.exe’ for download, both of which share file names with previously identified MyKings payloads.

MyKings deploys a diverse array of payloads to expand the botnet and secure a firm position within a compromised system. This multi-faceted approach may render conventional security measures less effective due to the intricacies of and variety of payloads involved in compromises. Darktrace, however, does not rely on static or outdated lists of IoCs in order to detect malicious activity. Instead, DETECT’s Self-Learning AI allows it to identify emerging compromise activity by recognizing the subtle deviations in an affected device’s behavior that could indicate it has fallen into the hands of malicious actors.

Figure 2: External site summary of the endpoint 103.145.106[.]242 showing the rarity of connectivity to the external host.

Achieving Objectives – Crypto-Mining

Several weeks after the initial payloads were delivered and beaconing commenced, Darktrace finally detected the initiation of crypto-mining operations. On May 27, the originally compromised server connected to the rare domain other.xmrpool[.]ru over port 1081. As seen in the domain name, this endpoint appears to be affiliated with pool mining activity and the domain has various OSINT affiliations with the cryptocurrency Monero coin. During this connection, the host was observed passing Monero credentials, activity which parallels similar mining operations observed on other customer networks that had been compromised by the MyKings botnet.

Although mining activity may not pose an immediate or urgent concern for security unauthorized cryptomining on devices can result in detrimental consequences, such as compromised hardware integrity, elevated energy costs, and reduced productivity, and even potential involvement in money laundering.

Figure 3: Event breach log showing details of the connection to the other.xmrpool[.]ru endpoint associated with cryptocurrency mining activity.

Conclusion

Detecting future iterations of the MyKings botnet will likely demand a shift away from an overreliance on traditional rules and signatures and lists of “known bads”, instead requiring organizations to employ AI-driven technology that can identify suspicious activity that represents a deviation from previously established patterns of life.

Despite the diverse range of payloads, malicious endpoints, and intricate activities that constitute a typical MyKing botnet compromise, Darktrace was able successfully detect multiple critical phases within the MyKings kill chain. Given the evolving nature of the MyKings botnet, it is highly probable the botnet will continue to expand and adapt, leveraging new tactics and technologies. By adopting Darktrace’s product of suites, including Darktrace DETECT, organizations are well-positioned to identify these evolving threats as soon as they emerge and, when coupled with the autonomous response technology of Darktrace RESPOND, threats like the MyKings botnet can be stopped in their tracks before they can achieve their ultimate goals.

Credit to: Oluwatosin Aturaka, Analyst Team Lead, Cambridge, Adam Potter, Cyber Analyst

Appendix

IoC Table

IoC - Type - Description + Confidence

162.216.150[.]108- IP - C2 Infrastructure

103.145.106[.]242 - IP - C2 Infrastructure

137.175.56[.]104 - IP - C2 Infrastructure

138.197.152[.]201 - IP - C2 Infrastructure

139.59.74[.]135 - IP - C2 Infrastructure

pc.pc0416[.]xyz - Domain - C2 Infrastructure (DGA)

other.xmrpool[.]ru - Domain - Cryptomining Endpoint

xmrpool[.]ru - Domain - Cryptomining Endpoint

103.145.106[.]55 - IP - Cryptomining Endpoint

ntuser[.]rar - Zipped File - Payload

/xmr1025[.]rar - Zipped File - Payload

/20201117[.]rar - Zipped File - Payload

wmi[.]txt - File - Payload

u[.]exe - Executable File - Payload

back[.]txt - File - Payload

upsupx2[.]exe - Executable File - Payload

cmd[.]txt - File - Payload

power[.]txt - File - Payload

ups[.]html - File - Payload

xmr1025.rar - Zipped File - Payload

171.91.76[.]31- IP - Possible Initial Compromise Endpoint

www[.]back0314[.]ru - Domain - Probable C2 Infrastructure

107.148.239[.]111 - IP - Probable C2 Infrastructure

194.67.71[.]99 - IP- Probable C2 Infrastructure

Darktrace DETECT Model Breaches

  • Device / Initial Breach Chain Compromise
  • Anomalous File / Masqueraded File Transfer (x37)
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Fast Beaconing to DGA
  • Device / Large Number of Model Breaches
  • Anomalous File / Multiple EXE from Rare External Locations (x30)
  • Compromise / Beacon for 4 Days (x2)
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Server Activity / New Internet Facing System
  • Anomalous File / EXE from Rare External Location (x37)
  • Device / Large Number of Connections to New Endpoints
  • Anomalous Server Activity / Server Activity on New Non-Standard Port (x3)
  • Device / Threat Indicator (x3)
  • Unusual Activity / Unusual External Activity
  • Compromise / Crypto Currency Mining Activity (x37)
  • Compliance / Internet Facing SQL Server
  • Device / Anomalous Scripts Download Followed By Additional Packages
  • Device / New User Agent

MITRE ATT&CK Mapping

ATT&CK Technique - Technique ID

Reconnaissance – T1595.002 Vulnerability Scanning

Resource Development – T1608 Stage Capabilities

Resource Development – T1588.001 Malware

Initial Access – T1190 Exploit Public-Facing Application

Command and Control – T15568.002 Domain Generated Algorithms

Command and Control – T1571 Non-Standard Port

Execution – T1047 Windows Management Instrumentation

Execution – T1059.001 Command and Scripting Interpreter

Persistence – T1542.003 Pre-OS Boot

Impact – T1496 Resource Hijacking

References

[1] https://www.binarydefense.com/resources/threat-watch/mykings-botnet-is-growing-and-remains-under-the-radar/

[2] https://therecord.media/a-malware-botnet-has-made-more-than-24-7-million-since-2019

[3] https://www.darktrace.com/blog/outlaw-returns-uncovering-returning-features-and-new-tactics

[4] https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-mykings-report.pdf

[5] https://www.antiy.com/response/20190822.html

[6] https://ethicaldebuggers.com/mykings-botnet/

[7] https://ethicaldebuggers.com/mykings-botnet/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oluwatosin Aturaka
Analyst Team Lead, Cambridge

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI