Blog
/
Email
/
August 2, 2024

Safelink Smuggling: Enhancing Resilience Against Malicious Links

Gain insights into safelink smuggling tactics and learn strategies to protect your organization from the dangers posed by malicious links.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2024

Darktrace security members and researchers have recently seen a rise in what we are calling Safelink Smuggling. Safelinks are URLs rewritten by security solutions to enable additional analysis when the URL is clicked. Once analyzed, they may prompt a user, redirect the browser back to the original URL, or block further access if deemed necessary.

What is Safelink Smuggling?

Safelink Smuggling is a technique that involves an attacker purposely getting their malicious payload rewritten by a security solution’s Safelink capability to then propagate the rewritten URL to others. This technique is a way for attackers to not only avoid detection by traditional email security and other solutions, but also to instill mistrust in all email security solutions. As a result, Safelinks from a range of popular email security providers are often seen in phishing or supply chain attacks. In fact, Darktrace has observed over 300,000 cases of Safelinks being included in unexpected and suspicious contexts over the last 3 months.

How does Safelink Smuggling work?

Safelink Smuggling has two key stages: Getting a malicious link rewritten by an email security solution, then propagating that rewritten link to other victims.

Step one:

Obfuscated a malicious payload through a Safelink capability rewriting the link; Darktrace has seen this attempted through two methods – Compromised Account or Reply-Chain.

  • Method 1: Compromised Account

If an attacker can gain access to a compromised account – whether that’s through brute force, malware or credential theft – they can infiltrate it with malicious links, and then exfiltrate the Safelinks created as the email passes through security filtering. In other words, attackers will send a malicious payload to the compromised inbox, with the intent that the malicious URL gets rewritten. Unlike a normal phishing email where the threat actor wants to avoid having their email blocked, in this case the objective is for the email to get through to the inbox with the link rewritten. As observed by Darktrace, attackers often send the link in isolation as any additional components (i.e., body text or other content in the email) could cause a more severe action such as the email security solution holding the message.

  • Method 2: Reply-Chain

With this method, the attacker sends a malicious link to an email security vendor’s customer in an attempt to solicit a reply from an internal user. This allows them to grab the re-written URL within the reply chain. However, this is a risky tactic which can fail at several points. The attacker has to be confident the initial email won't be blocked outright; they also risk alerting security vendors to the address and the URL intended to be used for the main campaign. They also must be confident that the checks made when the re-written URL is clicked will not lead to a block at the final destination.
Regardless of the method used, the end result will appear as follows:

For example, the original malicious URL may look like this,

faceldu[.]org/Invoice112.zip

(negative surface indicators: recently registered domain, file extension)

And after being rewritten,

securityvevndor[.]com/safe?q=aNDF80dfaAkAH930adbd

(positive surface indicators: established domain, positive reputation, associated with safe content)

Step Two:

Now that the attacker has access to a malicious URL that has been obfuscated by a safe rewrite, attackers can forward or craft an email leveraging that same link. In fact, we have even seen multiple layers of Safelink Smuggling being used to mask a payload further.

The Challenge of Link Rewriting

Traditional email security solutions rewrite all links sent to an organization, but there is an inherent risk to this methodology. Rewriting every link, whether harmless or harmful, leads employees to lose context and creates a false sense of security when interacting with rewritten links in emails. Furthermore, it provides attackers with many opportunities to exploit Safelinks. As demonstrated in Method 2 above, if an email security solution does not rewrite every link, executing such attacks would be significantly more challenging.

Traditionally, rewriting every link made sense from a security perspective, as it allowed servers to thoroughly analyze links for known attack patterns and signatures. However, this approach relies on identifying previously recognized threats. Conversely, Darktrace / EMAIL gathers sufficient information about a link without needing to rewrite it, by analyzing the context and content of the email and the link itself.

In fact, Darktrace is the pioneer in applying selective rewriting to URLs based on suspicious properties or context, a method that other solutions have since adopted. While traditional solutions rewrite links to assess them only after they are clicked, Darktrace / EMAIL takes immediate action to neutralize threats before they reach the inbox.

Darktrace achieves high success rates in detecting malicious links and emails on the first encounter using Self-Learning AI. By understanding 'normal' behavior in email communications, Darktrace identifies subtle deviations indicative of cyber threats and selectively rewrites only those links deemed suspicious, ensuring a targeted, proportionate, and non-disruptive response.

Why do traditional email security solutions miss Safelink attacks?

Traditional security solutions that focus on learning attack patterns will miss Safelink threats as they are often utilized in attacks that have a variety of layers which help the email seem legitimate. Leveraging all the classic techniques seen in a supply chain attack to disguise the sender's intent, taking advantage of the users' inherent trust in familiar sources, the user is more likely to lower their defenses.

For more information: https://darktrace.com/products/email/use-cases/supply-chain-attack

In terms of the URL, if the payload is malicious, why is it difficult for email security solutions to catch it? Primarily, other security vendors will focus on the payload in isolation, attempting to find known attack patterns or signatures such as a domain name or IP with a bad reputation. Unfortunately, with this technique, if the URL has a legitimate domain, it will return a clean track record. Common obfuscation techniques such as captchas, short-links, and click throughs can all be deployed to add layers of complexity to the analysis.

Safelink Smuggling relies heavily on link redirects, which means that web analysis tools will falter as they will only analyze the first redirect. Consequently, when more in-depth analysis on the link itself is performed, the first place the URL takes the user is not the malicious site but rather the default on-click analysis of the vendor in question. Therefore, any traditional browser or link analysis will also return a negative result.

Finally, the context itself is important. In contrast to traditional email security solutions, Darktrace / EMAIL asks who, what, when, where, and why for every single email, and compares it to the pattern of life of both the internal recipient and the external sender, rather than attempting to match patterns with historical threat data. When analyzing an email from an inbound perspective, Darktrace reveals potential deviations from normal, that, when considered sufficiently anomalous, will result in taking a proportional action to the threat assessed.

To illustrate the above, let’s take a look at an example email that Darktrace recently caught.

The following is an email a Darktrace customer received, which Darktrace / EMAIL held before it reached the inbox. In this case, the smuggled Safelink was further obfuscated behind a QR Code. The accompanying document also presented some anomalies in terms of its intent, perceived as a potential social engineering attempt. Finally, the lack of association and low mailing history meant there was no prior context for this email.  

Example of a Safelink Smuggling attack using a popular email security solution’s safelink.
Fig 1: Example of a Safelink Smuggling attack using a popular email security solution’s safelink.

How to mitigate against Safelink Smuggling?

It's difficult for email security vendors to do anything about their links being reused, and reuse should almost be expected by popular operators in the email security space. Therefore, the presence of links from a vendor’s domain in a suspicious email communication rarely indicates a compromise of the link rewrite infrastructure or a compromise of the third-party vendor.

Email security vendors can improve their defense-in-depth, especially around their email provider accounts to avoid Method 1 (Compromised Account attacks) and become more selective with their rewrites to curtail Method 2 (Reply Chain attacks).

Primary protection against Safelink Smuggling should be offered by the email security vendor responsible for inbound email analysis. They need to ensure that techniques such as Safelink Smuggling are not evaded by their detection mechanisms.

Darktrace has long been working on the betterment of security within the email community and innovating our link analysis infrastructure to mitigate against this attack methodology (read more about our major update in 6.2 here), regardless of whether the receiving organization are Darktrace customers.

How does Darktrace deal with Safelink Smuggling today?

Darktrace has been dealing with Safelink Smuggling since launch and has a standardized recommendation for customers who are looking to defend against this threat.

Customers want to avoid being 1) the propagators of this threat and potentially damaging their brand reputation, and 2) being victims of the supply chain attack thereafter.

The principal recommendation to protect customer accounts and consequently their brands is to ensure defense-in-depth. As accounts establish themselves as the crown jewels of any modern enterprise, organizations should vigilantly monitor their account activity with the same rigor they would analyze their network activity. Whether that is through the base account takeover protection offered by Darktrace / EMAIL, or the expanded defense offered by Darktrace / IDENTITY, it is crucial that the accounts themselves have a robust security solution in place.

Secondly, to avoid falling victim to the supply chain attack that leverages a third-party vendor’s link rewrite, it is imperative to use a solution that does not rely on static threat intelligence and link reputation analysis. Rather than chasing attackers by updating rules and signatures, Darktrace leverages Self-Learning AI to learn the communication patterns of both internal and external messages to reveal deviations in both content and context.

Finally, for those customers that already leverage Darktrace / EMAIL we recommend ensuring that lock links are enabled, and that the default warning page is displayed every time a link is rewritten, no matter the perceived severity of the link. This will allow any potential user that clicks on a rewritten Darktrace / EMAIL link to be alerted to the potential nature of the site they are trying to access.

Safelink smuggling example caught by Darktrace

While most cases involve other vendors, analysts recently saw a case where Darktrace's own links were used in this type of attack. A small number of links were leveraged in a campaign targeting both Darktrace and non-Darktrace customers alike. Thankfully, these attempts were all appropriately actioned by those customers that had Darktrace / EMAIL deployed.

In the example below, you will see how Darktrace Cyber AI Analyst describes the example at hand under the Anomaly Indicators section.

Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.
Fig 2: Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.

First, the display name mismatch can be interpreted as an indicator of social engineering, attempting to deceive the recipient with an IT policy change.

Second, the link itself, which in this case is a hidden redirect to an unusual host for this environment.

Finally, there is a suspected account takeover due to the origin of the email being a long-standing, validated domain that contains a wide variety of suspicious elements.

Darktrace / EMAIL would have held this email from being delivered.

Conclusion

By investigating Safelink Smuggling, Darktrace wants to shine a light on the technique for security teams and help raise awareness of how it can be used to dupe users into lowering their defenses. Challenge your email security vendor on how it deals with link analysis, particularly from trusted senders and applications.

Interested in Darktrace’s approach to defense-in-depth? Check out Darktrace / EMAIL

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI