Blog
/
Network
/
February 9, 2023

Vidar Network: Analyzing a Prolific Info Stealer

Discover the latest insights on the Vidar network-based info stealer from our Darktrace experts and stay informed on cybersecurity threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2023

In the latter half of 2022, Darktrace observed a rise in Vidar Stealer infections across its client base. These infections consisted in a predictable series of network behaviors, including usage of certain social media platforms for the retrieval of Command and Control (C2) information and usage of certain URI patterns in C2 communications. In the blog post, we will provide details of the pattern of network activity observed in these Vidar Stealer infections, along with details of Darktrace’s coverage of the activity. 

Background on Vidar Stealer

Vidar Stealer, first identified in 2018, is an info-stealer capable of obtaining and then exfiltrating sensitive data from users’ devices. This data includes banking details, saved passwords, IP addresses, browser history, login credentials, and crypto-wallet data [1]. The info-stealer, which is typically delivered via malicious spam emails, cracked software websites, malicious ads, and websites impersonating legitimate brands, is known to access profiles on social media platforms once it is running on a user’s device. The info-stealer does this to retrieve the IP address of its Command and Control (C2) server. After retrieving its main C2 address, the info-stealer, like many other info-stealers, is known to download several third-party Dynamic Link Libraries (DLLs) which it uses to gain access to sensitive data saved on the infected device. The info-stealer then bundles the sensitive data which it obtains and sends it back to the C2 server.  

Details of Attack Chain 

In the second half of 2022, Darktrace observed the following pattern of activity within many client networks:

1. User’s device makes an HTTPS connection to Telegram and/or to a Mastodon server

2. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to an unusual, external endpoint

3. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the unusual, external endpoint

4. User’s device makes an HTTP POST request with an empty User-Agent header, an empty Host header, and the target URI ‘/’ to the unusual, external endpoint 

Figure 1: The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting Telegram and then making a series of HTTP requests to 168.119.167[.]188
Figure 2:  The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting a Mastadon server and then making a series of HTTP requests to 107.189.31[.]171

Each of these activity chains occurred as the result of a user running Vidar Stealer on their device. No common method was used to trick users into running Vidar Stealer on their devices. Rather, a variety of methods, ranging from malspam to cracked software downloads appear to have been used. 

Once running on a user’s device, Vidar Stealer went on to make an HTTPS connection to either Telegram (https://t[.]me/) or a Mastodon server (https://nerdculture[.]de/ or https://ioc[.]exchange/). Telegram and Mastodon are social media platforms on which users can create profiles. Malicious actors are known to create profiles on these platforms and then to embed C2 information within the profiles’ descriptions [2].  In the Vidar cases observed across Darktrace’s client base, it seems that Vidar contacted Telegram and/or Mastodon servers in order to retrieve the IP address of its C2 server from a profile description. Since social media platforms are typically trusted, this ‘Dead Drop’ method of sharing C2 details with malware samples makes it possible for threat actors to regularly update C2 details without the communication of these changes being blocked. 

Figure 3: A screenshot a profile on the Mastodon server, nerdculture[.]de. The profile’s description contains a C2 address 

After retrieving its C2 address from the description of a Telegram or Mastodon profile, Vidar went on to make an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to its C2 server. The sequences of digits appearing in these URIs are campaign IDs. The C2 server responded to Vidar’s GET request with configuration details that likely informed Vidar’s subsequent data stealing activities. 

After receiving its configuration details, Vidar went on to make a GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the C2 server. This request was responded to with a ZIP file containing legitimate, third-party Dynamic Link Libraries such as ‘vcruntime140.dll’. Vidar used these libraries to gain access to sensitive data saved on the infected host. 

Figure 4: The above PCAP provides an example of the configuration details provided by a C2 server in response to Vidar’s first GET request 
Figure 5: Examples of DLLs included within ZIP files downloaded by Vidar samples

After downloading a ZIP file containing third-party DLLs, Vidar made a POST request containing hundreds of kilobytes of data to the C2 endpoint. This POST request likely represented exfiltration of stolen information. 

Darktrace Coverage

After infecting users’ devices, Vidar contacted either Telegram or Mastodon, and then made a series of HTTP requests to its C2 server. The info-stealer’s usage of social media platforms, along with its usage of ZIP files for tool transfer, complicate the detection of its activities. The info-stealer’s HTTP requests to its C2 server, however, caused the following Darktrace DETECT/Network models to breach:

  • Anomalous File / Zip or Gzip from Rare External Location 
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Posting HTTP to IP Without Hostname

These model breaches did not occur due to users’ devices contacting IP addresses known to be associated with Vidar. In fact, at the time that the reported activities occurred, many of the contacted IP addresses had no OSINT associating them with Vidar activity. The cause of these model breaches was in fact the unusualness of the devices’ HTTP activities. When a Vidar-infected device was observed making HTTP requests to a C2 server, Darktrace recognised that this behavior was highly unusual both for the device and for other devices in the network. Darktrace’s recognition of this unusualness caused the model breaches to occur. 

Vidar Stealer infections move incredibly fast, with the time between initial infection and data theft sometimes being less than a minute. In cases where Darktrace’s Autonomous Response technology was active, Darktrace RESPOND/Network was able to autonomously block Vidar’s connections to its C2 server immediately after the first connection was made. 

Figure 6: The Event Log for an infected device, shows that Darktrace RESPOND/Network autonomously intervened 1 second after the device first contacted the C2 server 95.217.245[.]254

Conclusion 

In the latter half of 2022, a particular pattern of activity was prolific across Darktrace’s client base, with the pattern being seen in the networks of customers across a broad range of industry verticals and sizes. Further investigation revealed that this pattern of network activity was the result of Vidar Stealer infection. These infections moved fast and were effective at evading detection due to their usage of social media platforms for information retrieval and their usage of ZIP files for tool transfer. Since the impact of info-stealer activity typically occurs off-network, long after initial infection, insufficient detection of info-stealer activity leaves victims at risk of attackers operating unbeknownst to them and of powerful attack vectors being available to launch broad compromises. 

Despite the evasion attempts made by the operators of Vidar, Darktrace DETECT/Network was able to detect the unusual HTTP activities which inevitably resulted from Vidar infections. When active, Darktrace RESPOND/Network was able to quickly take inhibitive actions against these unusual activities. Given the prevalence of Vidar Stealer [3] and the speed at which Vidar Stealer infections progress, Autonomous Response technology proves to be vital for protecting organizations from info-stealer activity.  

Thanks to the Threat Research Team for its contributions to this blog.

MITRE ATT&CK Mapping

List of IOCs

107.189.31[.]171 - Vidar C2 Endpoint

168.119.167[.]188 – Vidar C2 Endpoint 

77.91.102[.]51 - Vidar C2 Endpoint

116.202.180[.]202 - Vidar C2 Endpoint

79.124.78[.]208 - Vidar C2 Endpoint

159.69.100[.]194 - Vidar C2 Endpoint

195.201.253[.]5 - Vidar C2 Endpoint

135.181.96[.]153 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

135.181.104[.]248 - Vidar C2 Endpoint

159.69.101[.]102 - Vidar C2 Endpoint

45.8.147[.]145 - Vidar C2 Endpoint

159.69.102[.]192 - Vidar C2 Endpoint

193.43.146[.]42 - Vidar C2 Endpoint

159.69.102[.]19 - Vidar C2 Endpoint

185.53.46[.]199 - Vidar C2 Endpoint

116.202.183[.]206 - Vidar C2 Endpoint

95.217.244[.]216 - Vidar C2 Endpoint

78.46.129[.]14 - Vidar C2 Endpoint

116.203.7[.]175 - Vidar C2 Endpoint

45.159.249[.]3 - Vidar C2 Endpoint

159.69.101[.]170 - Vidar C2 Endpoint

116.202.183[.]213 - Vidar C2 Endpoint

116.202.4[.]170 - Vidar C2 Endpoint

185.252.215[.]142 - Vidar C2 Endpoint

45.8.144[.]62 - Vidar C2 Endpoint

74.119.192[.]157 - Vidar C2 Endpoint

78.47.102[.]252 - Vidar C2 Endpoint

212.23.221[.]231 - Vidar C2 Endpoint

167.235.137[.]244 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

5.252.23[.]169 - Vidar C2 Endpoint

45.89.55[.]70 - Vidar C2 Endpoint

References

[1] https://blog.cyble.com/2021/10/26/vidar-stealer-under-the-lens-a-deep-dive-analysis/

[2] https://asec.ahnlab.com/en/44554/

[3] https://blog.sekoia.io/unveiling-of-a-large-resilient-infrastructure-distributing-information-stealers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI