Blog
/
Network
/
July 26, 2024

Understanding the WarmCookie Backdoor Threat

Discover effective strategies for disarming the WarmCookie backdoor and securing your systems against this persistent threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2024

What is WarmCookie malware?

WarmCookie, also known as BadSpace [2], is a two-stage backdoor tool that provides functionality for threat actors to retrieve victim information and launch additional payloads. The malware is primarily distributed via phishing campaigns according to multiple open-source intelligence (OSINT) providers.

Backdoor malware: A backdoor tool is a piece of software used by attackers to gain and maintain unauthorized access to a system. It bypasses standard authentication and security mechanisms, allowing the attacker to control the system remotely.

Two-stage backdoor malware: This means the backdoor operates in two distinct phases:

1. Initial Stage: The first stage involves the initial infection and establishment of a foothold within the victim's system. This stage is often designed to be small and stealthy to avoid detection.

2. Secondary Stage: Once the initial stage has successfully compromised the system, it retrieves or activates the second stage payload. This stage provides more advanced functionalities for the attacker, such as extensive data exfiltration, deeper system control, or the deployment of additional malicious payloads.

How does WarmCookie malware work?

Reported attack patterns include emails attempting to impersonate recruitment firms such as PageGroup, Michael Page, and Hays. These emails likely represented social engineering tactics, with attackers attempting to manipulate jobseekers into engaging with the emails and following malicious links embedded within [3].

This backdoor tool also adopts stealth and evasion tactics to avoid the detection of traditional security tools. Reported evasion tactics included custom string decryption algorithms, as well as dynamic API loading to prevent researchers from analyzing and identifying the core functionalities of WarmCookie [1].

Before this backdoor makes an outbound network request, it is known to capture details from the target machine, which can be used for fingerprinting and identification [1], this includes:

- Computer name

- Username

- DNS domain of the machine

- Volume serial number

WarmCookie samples investigated by external researchers were observed communicating over HTTP to a hardcoded IP address using a combination of RC4 and Base64 to protect its network traffic [1]. Ultimately, threat actors could use this backdoor to deploy further malicious payloads on targeted networks, such as ransomware.

Darktrace Coverage of WarmCookie

Between April and June 2024, Darktrace’s Threat Research team investigated suspicious activity across multiple customer networks indicating that threat actors were utilizing the WarmCookie backdoor tool. Observed cases across customer environments all included the download of unusual executable (.exe) files and suspicious outbound connectivity.

Affected devices were all observed making external HTTP requests to the German-based external IP, 185.49.69[.]41, and the URI, /data/2849d40ade47af8edfd4e08352dd2cc8.

The first investigated instance occurred between April 23 and April 24, when Darktrace detected a a series of unusual file download and outbound connectivity on a customer network, indicating successful WarmCookie exploitation. As mentioned by Elastic labs, "The PowerShell script abuses the Background Intelligent Transfer Service (BITS) to download WarmCookie and run the DLL with the Start export" [1].

Less than a minute later, the same device was observed making HTTP requests to the rare external IP address: 185.49.69[.]41, which had never previously been observed on the network, for the URI /data/b834116823f01aeceed215e592dfcba7. The device then proceeded to download masqueraded executable file from this endpoint. Darktrace recognized that these connections to an unknown endpoint, coupled with the download of a masqueraded file, likely represented malicious activity.

Following this download, the device began beaconing back to the same IP, 185.49.69[.]41, with a large number of external connections observed over port 80.  This beaconing related behavior could further indicate malicious software communicating with command-and-control (C2) servers.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:10:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:11:18 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

- Event details: File: http[:]//185.49.69[.]41/data/b834116823f01aeceed215e592dfcba7, total seen size: 144384B, direction: Incoming

- SHA1 file hash: 4ddf0d9c750bfeaebdacc14152319e21305443ff

- MD5 file hash: b09beb0b584deee198ecd66976e96237

[Model Alert: Compromise / Beaconing Activity To External Rare]

- Associated device type: desktop

- Time of alert: 2024-04-23T14:15:24 UTC

- Destination IP: 185.49.69[.]41

- Destination port: 80

- Protocol: TCP

- Application protocol: HTTP

- ASN: AS28753 Leaseweb Deutschland GmbH  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705)

Between May 7 and June 4, Darktrace identified a wide range of suspicious external connectivity on another customer’s environment. Darktrace’s Threat Research team further investigated this activity and assessed it was likely indicative of WarmCookie exploitation on customer devices.

Similar to the initial use case, BITS activity was observed on affected devices, which is utilized to download WarmCookie [1]. This initial behavior was observed with the device after triggering the model: Device / Unusual BITS Activity on May 7.

Just moments later, the same device was observed making HTTP requests to the aforementioned German IP address, 185.49.69[.]41 using the same URI /data/2849d40ade47af8edfd4e08352dd2cc8, before downloading a suspicious executable file.

Just like the first use case, this device followed up this suspicious download with a series of beaconing connections to 185.49.69[.]41, again with a large number of connections via port 80.

Similar outgoing connections to 185.49.69[.]41 and model alerts were observed on additional devices during the same timeframe, indicating that numerous customer devices had been compromised.

Darktrace’s model alert coverage included the following details:

[Model Alert: Device / Unusual BITS Activity]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:23 UTC

- ASN: AS28753 Leaseweb Deutschland GmbH

- User agent: Microsoft BITS/7.8

[Model Alert: Anomalous File / EXE from Rare External Location]

[Model Alert: Anomalous File / Masqueraded File Transfer]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:03:35 UTC  

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- ASN: AS28753 Leaseweb Deutschland GmbH

- Event details: File: http[:]//185.49.69[.]41/data/2849d40ade47af8edfd4e08352dd2cc8, total seen size: 72704B, direction: Incoming

- SHA1 file hash: 5b0a35c574ee40c4bccb9b0b942f9a9084216816

- MD5 file hash: aa9a73083184e1309431b3c7a3e44427  

[Model Alert: Anomalous Connection / New User Agent to IP Without Hostname]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:04:14 UTC  

- Destination IP: 185.49.69[.]41  

- Application protocol: HTTP  

- URI: /data/2849d40ade47af8edfd4e08352dd2cc8

- User agent: Microsoft BITS/7.8  

[Model Alert: Compromise / HTTP Beaconing to New Endpoint]

- Associated device type: desktop

- Time of alert: 2024-05-07T09:08:47 UTC

- Destination IP: 185.49.69[.]41

- Protocol: TCP

- Application protocol: HTTP  

- ASN: AS28753 Leaseweb Deutschland GmbH  

- URI: /  

- User agent: Mozilla / 4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;.NET CLR 1.0.3705) \

Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
Figure 1: Cyber AI Analyst Coverage Details around the external destination, ‘185.49.69[.]41’.
External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.
Figure 2: External Sites Summary verifying the geographical location of the external IP, 185.49.69[.]41’.

Fortunately, this particular customer was subscribed to Darktrace’s Proactive Threat Notification (PTN) service and the Darktrace Security Operation Center (SOC) promptly investigated the activity and alerted the customer. This allowed their security team to address the activity and begin their own remediation process.

In this instance, Darktrace’s Autonomous Response capability was configured in Human Confirmation mode, meaning any mitigative actions required manual application by the customer’s security team.

Despite this, Darktrace recommended two actions to contain the activity: blocking connections to the suspicious IP address 185.49.69[.]41 and any IP addresses ending with '69[.]41', as well as the ‘Enforce Pattern of Life’ action. By enforcing a pattern of life, Darktrace can restrict a device (or devices) to its learned behavior, allowing it to continue regular business activities uninterrupted while blocking any deviations from expected activity.

Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.
Figure 3: Actions suggested by Darktrace to contain the emerging activity, including blocking connections to the suspicious endpoint and restricting the device to its ‘pattern of life’.

Conclusion

Backdoor tools like WarmCookie enable threat actors to gather and leverage information from target systems to deploy additional malicious payloads, escalating their cyber attacks. Given that WarmCookie’s primary distribution method seems to be through phishing campaigns masquerading as trusted recruitments firms, it has the potential to affect a large number of organizations.

In the face of such threats, Darktrace’s behavioral analysis provides organizations with full visibility over anomalous activity on their digital estates, regardless of whether the threat bypasses by human security teams or email security tools. While threat actors seemingly managed to evade customers’ native email security and gain access to their networks in these cases, Darktrace identified the suspicious behavior associated with WarmCookie and swiftly notified customer security teams.

Had Darktrace’s Autonomous Response capability been fully enabled in these cases, it could have blocked any suspicious connections and subsequent activity in real-time, without the need of human intervention, effectively containing the attacks in the first instance.

Credit to Justin Torres, Cyber Security Analyst and Dylan Hinz, Senior Cyber Security Analyst

Appendices

Darktrace Model Detections

- Anomalous File / EXE from Rare External Location

- Anomalous File / Masqueraded File Transfer  

- Compromise / Beacon to Young Endpoint  

- Compromise / Beaconing Activity To External Rare  

- Compromise / HTTP Beaconing to New Endpoint  

- Compromise / HTTP Beaconing to Rare Destination

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Successful Connections

- Compromise / Quick and Regular Windows HTTP Beaconing

- Compromise / SSL or HTTP Beacon

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Sustained SSL or HTTP Increase

- Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

- Anomalous Connection / Multiple Failed Connections to Rare Endpoint

- Anomalous Connection / New User Agent to IP Without Hostname

- Compromise / Sustained SSL or HTTP Increase

AI Analyst Incident Coverage:

- Unusual Repeated Connections

- Possible SSL Command and Control to Multiple Endpoints

- Possible HTTP Command and Control

- Suspicious File Download

Darktrace RESPOND Model Detections:

- Antigena / Network / External Threat / Antigena Suspicious File Block

- Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.49.69[.]41 – IP Address – WarmCookie C2 Endpoint

/data/2849d40ade47af8edfd4e08352dd2cc8 – URI – Likely WarmCookie URI

/data/b834116823f01aeceed215e592dfcba7 – URI – Likely WarmCookie URI

4ddf0d9c750bfeaebdacc14152319e21305443ff  - SHA1 Hash  – Possible Malicious File

5b0a35c574ee40c4bccb9b0b942f9a9084216816  - SHA1 Hash – Possiblem Malicious File

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Malware - RESOURCE DEVELOPMENT - T1588.001 - T1588

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services - RESOURCE DEVELOPMENT - T1583.006 - T1583

Browser Extensions - PERSISTENCE - T1176

Application Layer Protocol - COMMAND AND CONTROL - T1071

Fallback Channels - COMMAND AND CONTROL - T1008

Multi-Stage Channels - COMMAND AND CONTROL - T1104

Non-Standard Port - COMMAND AND CONTROL - T1571

One-Way Communication - COMMAND AND CONTROL - T1102.003 - T1102

Encrypted Channel - COMMAND AND CONTROL - T1573

External Proxy - COMMAND AND CONTROL - T1090.002 - T1090

Non-Application Layer Protocol - COMMAND AND CONTROL - T1095

References

[1] https://www.elastic.co/security-labs/dipping-into-danger

[2] https://www.gdatasoftware.com/blog/2024/06/37947-badspace-backdoor

[3] https://thehackernews.com/2024/06/new-phishing-campaign-deploys.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI