Blog
/
Email
/
July 18, 2023

How Darktrace SOC Thwarted a BEC Attack

Discover how Darktrace's SOC detected and stopped a Business Email Compromise in a customer's SaaS environment.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Photo of woman looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023

What is Business Email Compromise (BEC)?

Business Email Compromise (BEC) is the practice of tricking an organization into transferring funds or sensitive data to a malicious actor.

Although at face value this type of attack may not carry the same gravitas as the more blockbuster, cloak-and-dagger type of attack such as ransomware [1], the costs of BEC actually dwarf that of ransomware [2]. Moreover, among UK organizations that reported a cyber breach in 2023, attacks related to BEC – namely phishing attacks, email impersonation, attempted hacking of online back accounts, and account takeover – were reported as the most disruptive, ahead of ransomware and other types of cyber-attack [3].  

What makes a BEC attack successful?

BEC attacks are so successful and damaging due to the difficulty of detection for traditional security systems, along with their ease of execution.  BEC does not require much technical sophistication to accomplish; rather, it exploits humans’ natural trust in known correspondents, via a phishing email for example, to induce them to perform a certain action.

How does a BEC attack work?

BEC attacks typically begin with a phishing email to an employee of an organization. Traditional email gateways may be unable to block the initial phishing email, as the email often appear to have been sent by a known correspondent, or it may contain minimal payload content.

The recipient’s interaction with the initial phishing email will likely result in the attacker gaining access to the user’s identity. Once access is obtained, the attacker may abuse the identity of the compromised user to obtain details of the user’s financial relations to the rest of the organization or its customers, eventually using these details to conduct further malicious email activity, such as sending out emails containing fraudulent wire transfer requests.  Today, the continued growth in adoption of services to support remote working, such as cloud file storage and sharing, means that the compromise of a single user’s email account can also grant access to a wide range of corporate sensitive information.

How to protect against BEC attacks

The rapid uptake of cloud-based infrastructure and software-as-a-service (SaaS) outpaces the adoption of skills and expertise required to secure it, meaning that security teams are often less prepared to detect and respond to cloud-based attacks.  

Alongside the adoption of security measures that specialize in anomaly-based detection and autonomous response, like Darktrace DETECT™ and Darktrace RESPOND™, it is extremely beneficial for organizations to have an around the clock security operations center (SOC) in place to monitor and investigate ongoing suspicious activity as it emerges.

In June 2023, Darktrace’s SOC alerted a customer to an active BEC attack within their cloud environment, following the successful detection of suspicious activity by Darktrace’s AI, playing a fundamental role in thwarting the attack in its early stages.

Darktrace Mitigates BEC Attack

Figure 1: Screenshot of the SaaS Console showing location information for the compromised SaaS account.  The ability to visualize the distance between these two locations enables a SOC Analyst to deduce that the simultaneous activity from London and Derby may represent impossible travel’.

It was suspected the attack began with a phishing email, as on the previous day the user had received a highly anomalous email from an external sender with which the organization had not previously communicated. However, the customer had configured Darktrace/Email™ in passive mode, which meant that Darktrace was not able to carry out any RESPOND actions on this anomalous email to prevent it from landing in the user’s inbox. Despite this, Darktrace/Apps was able to instantly detect the subsequent unusual login to the customer’s SaaS environment; its anomaly-based approach to threat detection allowed it to recognize the anomalous behavior even though the malicious email had successfully reached the user.

Following the anomalous ExpressVPN login, Darktrace detected further account anomalies originating from another ExpressVPN IP (45.92.229[.]195), as the attacker accessed files over SharePoint.  Notably, Darktrace identified that the logins from ExpressVPN IPs were performed with the software Chrome 114, however, activity from the legitimate account owner prior to these unusual logins was performed using the software Chrome 102. It is unusual for a user to be using multiple browser versions simultaneously, therefore in addition to the observed impossible travel, this further implied the presence of different actors behind the simultaneous account activity.

Figure 2: Screenshot of the Event Log for the compromised SaaS account, showing simultaneous login and file access activity on the account from different browser versions, and thus likely from different devices.

Darktrace identified that the files observed during this anomalous activity referenced financial information and personnel schedules, suggesting that the attacker was performing internal reconnaissance to gather information about sensitive internal company procedures, in preparation for further fraudulent financial activity.

Although the actions taken by the attacker were mostly passive, Darktrace/Apps chained together the multiple anomalies to understand that this pattern of activity was indicative of movement along the cyber kill chain. The multiple model breaches generated by the ongoing unusual activity triggered an Enhanced Monitoring model breach that was escalated to Darktrace’s SOC as the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service.  Enhanced Monitoring models detect activities that are more likely to be indicative of compromise.  

Subsequently, Darktrace’s SOC triaged the activity detected on the SaaS account and sent a PTN alert to the customer, advising urgent follow up action.  The encrypted alert contained relevant technical details of the incident that were summarized by an expert Darktrace Analyst, along with recommendations to the customer’s internal SOC team to take immediate action.  Upon receipt and validation of the alert, the customer used Darktrace RESPOND to perform a manual force logout and block access from the external ExpressVPN IP.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have immediately taken action to disable the account after ongoing anomalies were detected from it. However, as the customer only had RESPOND configured in the manual human confirmation model, the expertise of Darktrace’s SOC team was critical in enabling the customer to react and prevent further escalation of post-compromise activity.  Evidence of further attempts to access the compromised account were observed hours after RESPOND actions were taken, including failed login attempts from another rare external IP, this time associated with the VPN service NordVPN.

Figure 3: Timeline of attack and response actions from Darktrace SOC and Darktrace RESPOND.

Because the customer had subscribed to Darktrace’s PTN service, they were able to further leverage the expertise of Darktrace’s global team of cyber analysts and request further analysis of which files were accessed by the legitimate account owner versus the attacker.  This information was shared securely within the same Customer Portal ticket that was automatically opened on behalf of the customer when the PTN was alerted, allowing the customer’s security team to submit further queries and feedback, and request assistance to further investigate this alert within Darktrace. A similar service called Ask the Expert (ATE) exists for customers to draw from the expertise of Darktrace’s analysts at any time, not just when PTNs are alerted.

Conclusion

The growing prevalence and impact of BEC attacks amid the shift to cloud-based infrastructure means that already stretched internal security teams may not have the sufficient human capacity to detect and respond to these threats.

Darktrace’s round-the-clock SOC thwarted a BEC attack that had the potential to result in significant financial and reputational damage to the legal services company, by alerting the customer to high priority activity during the early stages of the attack and sharing actionable insights that the customer could use to prevent further escalation.  Following the confirmed compromise, the support and in-depth analysis provided by Darktrace’s SOC on the files accessed by the attacker enabled the customer to effectively report this breach to the Information Commissioner’s Office, to maintain compliance with UK data protection regulations. [4].  

Although the attacker used IP addresses that were local to the customer’s country of operations and did not perform overtly noisy actions during reconnaissance, Darktrace was able to identify that this activity deviated from the legitimate user’s typical pattern of life, triggering model breaches at each stage of the attack as it progressed from initial access to internal reconnaissance. While Darktrace RESPOND triggered an action that would have prevented the attack autonomously, the customer’s configuration meant that Darktrace’s SOC had an even more significant role in alerting the customer directly to take manual action.

Credit to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

Darktrace DETECT/Apps Models Breached:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

Darktrace RESPOND/Apps Models Breached:

  • Antigena / SaaS / Antigena Unusual Activity Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Tactic Techniques
Reconnaissance • T1598 – Phishing for Information
Initial Access • T1078.004 – Valid Accounts: Cloud Accounts
Collection • T1213.002 – Data from Information Repositories: Sharepoint

References

[1] Rand, D. (2022, November 10). Why Business Email Compromise Costs Companies More Than Ransomware Attacks. Retrieved from Tanium: https://www.tanium.com/blog/whybusiness-email-compromise-costs-companies-more-than-ransomware-attacks/

[2] Federal Bureau of Investigation. (2022). 2022 IC3 Report. Retrieved from IC3.gov: https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] Department for Science, Innovation & Technology. (2023, April 19). Cyber security breaches survey 2023. Retrieved from gov.uk: https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cybersecurity-breaches-survey-2023

[4] ICO. (2023). Personal data breaches: a guide. Retrieved from Information Commissioner's Office: https://ico.org.uk/for-organisations/report-a-breach/personal-data-breach/personal-data-breaches-a-guide/#whatbreachesdo

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

login on laptop dual factor authenticationDefault blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

/

Network

/

June 19, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI