Blog
/
Email
/
July 18, 2023

How Darktrace SOC Thwarted a BEC Attack

Photo of woman looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023
Discover how Darktrace's SOC detected and stopped a Business Email Compromise in a customer's SaaS environment.

What is Business Email Compromise (BEC)?

Business Email Compromise (BEC) is the practice of tricking an organization into transferring funds or sensitive data to a malicious actor.

Although at face value this type of attack may not carry the same gravitas as the more blockbuster, cloak-and-dagger type of attack such as ransomware [1], the costs of BEC actually dwarf that of ransomware [2]. Moreover, among UK organizations that reported a cyber breach in 2023, attacks related to BEC – namely phishing attacks, email impersonation, attempted hacking of online back accounts, and account takeover – were reported as the most disruptive, ahead of ransomware and other types of cyber-attack [3].  

What makes a BEC attack successful?

BEC attacks are so successful and damaging due to the difficulty of detection for traditional security systems, along with their ease of execution.  BEC does not require much technical sophistication to accomplish; rather, it exploits humans’ natural trust in known correspondents, via a phishing email for example, to induce them to perform a certain action.

How does a BEC attack work?

BEC attacks typically begin with a phishing email to an employee of an organization. Traditional email gateways may be unable to block the initial phishing email, as the email often appear to have been sent by a known correspondent, or it may contain minimal payload content.

The recipient’s interaction with the initial phishing email will likely result in the attacker gaining access to the user’s identity. Once access is obtained, the attacker may abuse the identity of the compromised user to obtain details of the user’s financial relations to the rest of the organization or its customers, eventually using these details to conduct further malicious email activity, such as sending out emails containing fraudulent wire transfer requests.  Today, the continued growth in adoption of services to support remote working, such as cloud file storage and sharing, means that the compromise of a single user’s email account can also grant access to a wide range of corporate sensitive information.

How to protect against BEC attacks

The rapid uptake of cloud-based infrastructure and software-as-a-service (SaaS) outpaces the adoption of skills and expertise required to secure it, meaning that security teams are often less prepared to detect and respond to cloud-based attacks.  

Alongside the adoption of security measures that specialize in anomaly-based detection and autonomous response, like Darktrace DETECT™ and Darktrace RESPOND™, it is extremely beneficial for organizations to have an around the clock security operations center (SOC) in place to monitor and investigate ongoing suspicious activity as it emerges.

In June 2023, Darktrace’s SOC alerted a customer to an active BEC attack within their cloud environment, following the successful detection of suspicious activity by Darktrace’s AI, playing a fundamental role in thwarting the attack in its early stages.

Darktrace Mitigates BEC Attack

Figure 1: Screenshot of the SaaS Console showing location information for the compromised SaaS account.  The ability to visualize the distance between these two locations enables a SOC Analyst to deduce that the simultaneous activity from London and Derby may represent impossible travel’.

It was suspected the attack began with a phishing email, as on the previous day the user had received a highly anomalous email from an external sender with which the organization had not previously communicated. However, the customer had configured Darktrace/Email™ in passive mode, which meant that Darktrace was not able to carry out any RESPOND actions on this anomalous email to prevent it from landing in the user’s inbox. Despite this, Darktrace/Apps was able to instantly detect the subsequent unusual login to the customer’s SaaS environment; its anomaly-based approach to threat detection allowed it to recognize the anomalous behavior even though the malicious email had successfully reached the user.

Following the anomalous ExpressVPN login, Darktrace detected further account anomalies originating from another ExpressVPN IP (45.92.229[.]195), as the attacker accessed files over SharePoint.  Notably, Darktrace identified that the logins from ExpressVPN IPs were performed with the software Chrome 114, however, activity from the legitimate account owner prior to these unusual logins was performed using the software Chrome 102. It is unusual for a user to be using multiple browser versions simultaneously, therefore in addition to the observed impossible travel, this further implied the presence of different actors behind the simultaneous account activity.

Figure 2: Screenshot of the Event Log for the compromised SaaS account, showing simultaneous login and file access activity on the account from different browser versions, and thus likely from different devices.

Darktrace identified that the files observed during this anomalous activity referenced financial information and personnel schedules, suggesting that the attacker was performing internal reconnaissance to gather information about sensitive internal company procedures, in preparation for further fraudulent financial activity.

Although the actions taken by the attacker were mostly passive, Darktrace/Apps chained together the multiple anomalies to understand that this pattern of activity was indicative of movement along the cyber kill chain. The multiple model breaches generated by the ongoing unusual activity triggered an Enhanced Monitoring model breach that was escalated to Darktrace’s SOC as the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service.  Enhanced Monitoring models detect activities that are more likely to be indicative of compromise.  

Subsequently, Darktrace’s SOC triaged the activity detected on the SaaS account and sent a PTN alert to the customer, advising urgent follow up action.  The encrypted alert contained relevant technical details of the incident that were summarized by an expert Darktrace Analyst, along with recommendations to the customer’s internal SOC team to take immediate action.  Upon receipt and validation of the alert, the customer used Darktrace RESPOND to perform a manual force logout and block access from the external ExpressVPN IP.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have immediately taken action to disable the account after ongoing anomalies were detected from it. However, as the customer only had RESPOND configured in the manual human confirmation model, the expertise of Darktrace’s SOC team was critical in enabling the customer to react and prevent further escalation of post-compromise activity.  Evidence of further attempts to access the compromised account were observed hours after RESPOND actions were taken, including failed login attempts from another rare external IP, this time associated with the VPN service NordVPN.

Figure 3: Timeline of attack and response actions from Darktrace SOC and Darktrace RESPOND.

Because the customer had subscribed to Darktrace’s PTN service, they were able to further leverage the expertise of Darktrace’s global team of cyber analysts and request further analysis of which files were accessed by the legitimate account owner versus the attacker.  This information was shared securely within the same Customer Portal ticket that was automatically opened on behalf of the customer when the PTN was alerted, allowing the customer’s security team to submit further queries and feedback, and request assistance to further investigate this alert within Darktrace. A similar service called Ask the Expert (ATE) exists for customers to draw from the expertise of Darktrace’s analysts at any time, not just when PTNs are alerted.

Conclusion

The growing prevalence and impact of BEC attacks amid the shift to cloud-based infrastructure means that already stretched internal security teams may not have the sufficient human capacity to detect and respond to these threats.

Darktrace’s round-the-clock SOC thwarted a BEC attack that had the potential to result in significant financial and reputational damage to the legal services company, by alerting the customer to high priority activity during the early stages of the attack and sharing actionable insights that the customer could use to prevent further escalation.  Following the confirmed compromise, the support and in-depth analysis provided by Darktrace’s SOC on the files accessed by the attacker enabled the customer to effectively report this breach to the Information Commissioner’s Office, to maintain compliance with UK data protection regulations. [4].  

Although the attacker used IP addresses that were local to the customer’s country of operations and did not perform overtly noisy actions during reconnaissance, Darktrace was able to identify that this activity deviated from the legitimate user’s typical pattern of life, triggering model breaches at each stage of the attack as it progressed from initial access to internal reconnaissance. While Darktrace RESPOND triggered an action that would have prevented the attack autonomously, the customer’s configuration meant that Darktrace’s SOC had an even more significant role in alerting the customer directly to take manual action.

Credit to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

Darktrace DETECT/Apps Models Breached:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

Darktrace RESPOND/Apps Models Breached:

  • Antigena / SaaS / Antigena Unusual Activity Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Tactic Techniques
Reconnaissance • T1598 – Phishing for Information
Initial Access • T1078.004 – Valid Accounts: Cloud Accounts
Collection • T1213.002 – Data from Information Repositories: Sharepoint

References

[1] Rand, D. (2022, November 10). Why Business Email Compromise Costs Companies More Than Ransomware Attacks. Retrieved from Tanium: https://www.tanium.com/blog/whybusiness-email-compromise-costs-companies-more-than-ransomware-attacks/

[2] Federal Bureau of Investigation. (2022). 2022 IC3 Report. Retrieved from IC3.gov: https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] Department for Science, Innovation & Technology. (2023, April 19). Cyber security breaches survey 2023. Retrieved from gov.uk: https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cybersecurity-breaches-survey-2023

[4] ICO. (2023). Personal data breaches: a guide. Retrieved from Information Commissioner's Office: https://ico.org.uk/for-organisations/report-a-breach/personal-data-breach/personal-data-breaches-a-guide/#whatbreachesdo

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nicole Wong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

March 21, 2025

Cyberhaven Supply Chain Attack: Exploiting Browser Extensions

Default blog imageDefault blog image

The evolution of supply chain attacks

Supply chain attacks are becoming increasingly sophisticated. As network defenses improve, threat actors continuously adapt and refine their tactics, techniques, and procedures (TTPs) to achieve their goals. In recent years, this has led to a rise in the exploitation of trusted services and software, including legitimate browser extensions. Exploitation of these extensions can provide adversaries with a stealthy means to infiltrate target networks and access high-value accounts undetected.

A notable example of this trend was the compromise of the Cyberhaven Chrome extension at the end of 2024. This incident appeared to be part of a broader campaign targeting multiple Chrome browser extensions, highlighting the evolving nature of supply chain attacks [1].

What is Cyberhaven?

Cyberhaven, a US-based data security organization, experienced a security breach on December 24, 2024, when a phishing attack reportedly compromised one of their employee's credentials [2]. This allowed attackers to publish a malicious version of the Cyberhaven Chrome extension, which exfiltrated cookies and authenticated sessions from targeted websites. The malicious extension was active from December 25 to December 26 – a time when most businesses and employees were out of office and enjoying the festive period, a fact not lost on threat actors. The attackers, likely a well-organized and financially motivated group, compromised more than 30 additional Chrome extensions, affecting more than 2.6 million users [3]. They used sophisticated phishing techniques to authorize malicious OAuth applications, bypassing traditional security measures and exploiting vulnerabilities in OAuth authorizations. The primary motive appeared to be financial gain, targeting high-value platforms like social media advertising and AI services [4].

In late December 2024, multiple Darktrace customers were compromised via the Cyberhaven Chrome extension; this blog will primarily focus on Darktrace / NETWORK detections from one affected customer.

Darktrace’s coverage of Cyberhaven compromises

On December 26, 2024, Darktrace identified a series of suspicious activities across multiple customer environments, uncovering a structured attack sequence that progressed from initial intrusion to privilege escalation and data exfiltration. The attack was distributed through a malicious update to the Cyberhaven Chrome extension [2]. The malicious update established a foothold in customer environments almost immediately, leading to further anomalies.

As with other Chrome browser extensions, Cyberhaven Chrome extensions were updated automatically with no user interaction required. However, in this instance, the automatic update included a malicious version which was deployed to customer environments. This almost immediately introduced unauthorized activity, allowing attackers to establish a foothold in customer networks. The update allowed attackers to execute their objectives in the background, undetected by traditional security tools that rely on known indicators of compromise (IoCS) rather than identifying anomalies.

While multiple customer devices were seen connecting to cyberhaven[.]io, a legitimate Cyberhaven domain, Darktrace detected persistent beaconing behavior to cyberhavenext[.]pro, which appeared to be attempting to masquerade as another legitimate Cyberhaven domain. Darktrace recognized this activity as unusual, triggering several model alerts in Darktrace / NETWORK to highlight the persistent outbound connections to the suspicious domain.

Further analysis of external connectivity patterns indicated  an increase in anomalous HTTP requests alongside this beaconing activity. Multiple open-source intelligence (OSINT) sources also suggest that the cyberhavenext[.]pro endpoint is associated with malicious activities [5].

Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro
Figure 1: Darktrace / NETWORK’s detection of beaconing activity to cyberhavenext[.]pro

Analysis using Darktrace’s Advanced Search revealed that some of these connections were directed to the suspicious external IP address 149.28.124[.]84. Further investigation confirmed that the IP correlated with two SSL hostnames, including the malicious cyberhavenext[.]pro, further reinforcing its connection to the attack infrastructure.

Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.
Figure 2: Darktrace Advanced Search analysis showing the IP address 149.28.124[.]84 correlating to two SSL hostnames, one of which is cyberhavenext[.]pro.

Between December 23 and December 27, Darktrace observed sustained beaconing-like activity from affected devices on the customer’s network.

Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.
Figure 3: Darktrace’s detection of beaconing activities from a customer device to the endpoint 149.28.124[.]84 between December 23 and December 27.

Darktrace observed 27 unique devices connecting to the malicious command-and-control (C2) infrastructure as far back as December 3. While most connections were brief, they represented an entry point for malicious activity. Over a two-day period, two devices transmitted 5.57 GiB of incoming data and 859.37 MiB of outgoing data, generating over 3 million log events across SSL, HTTP, and connection data.

Subsequent analysis identified a significant increase in unauthorized data transfers to the aforementioned 149.28.124[.]84 IP on another customer network, highlighting the potential broader impact of this compromise. The volume and frequency of these transfers suggested that attackers were leveraging automated data collection techniques, further underscoring the sophistication of the attack.

Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.
Figure 4: Darktrace’s detection of the likely exfiltration of 859.37 MiB to the endpoint 149.28.124[.]84.

External research suggested that once active, the Cyberhaven extension would begin silently collecting session cookies and authentication tokens, specifically targeting high-value accounts such as Facebook Ads accounts [4]. Darktrace’s analysis of another affected customer noted many HTTP POST connections directed to a specific URI ("ai-cyberhaven"), while GET requests contained varying URIs prefixed with "/php/urlblock?args=AAAh....--redirect." This activity indicated an exfiltration mechanism, consistent with techniques observed in other compromised Chrome extensions. By compromising session cookies, attackers could potentially gain administrative access to connected accounts, further escalating their privileges [4].

Conclusion

This incident highlights the importance of monitoring not just endpoint security, but also cloud and browser-based security solutions, as attackers increasingly target these trusted and oft overlooked vectors.

Ultimately, by focusing on anomaly detection and behavioral analysis rather than static signatures and lists of ‘known bads’, Darktrace was able to successfully detect devices affected by the Cyberhaven Chrome browser extension compromise, by identifying activity that would likely have been considered legitimate and benign by traditional security solutions.

This compromise also serves as a reminder that supply chain attacks are not limited to traditional software vendors. Browser extensions, cloud-based applications, and SaaS services are equally vulnerable, as evidenced by Darktrace's detection of Balada Injector malware exploiting WordPress vulnerabilities to gain unauthorized network access [6]. Therefore, increased targeting of browser-based security tools, and a greater exploitation of OAuth and session hijacking techniques are to be expected. Attackers will undoubtedly refine their methods to infiltrate legitimate vendors and distribute malicious updates through trusted channels. By staying informed, vigilant, and proactive, organizations can mitigate exposure to evolving supply chain threats and safeguard their critical assets from emerging browser-based attack techniques.

Credit to Rajendra Rushanth (Cyber Analyst) Justin Torres (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

·       Compromise / Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Beacon for 4 Days (AP: C2 Comms)

·       Compromise / HTTP Beaconing to Rare Destination (AP: C2 Comms)

·       Device / Suspicious Domain (AP: C2 Comms, AP: Tooling)

·       Compromise / Sustained TCP Beaconing Activity To Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Rare External from Server (AP: C2 Comms)

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint (AP: C2 Comms)

·       Anomalous Server Activity / Anomalous External Activity from Critical Network Device (AP: C2 Comms)

·       Compromise / Slow Beaconing Activity To External Rare (AP: C2 Comms)

·       Compromise / Repeating Connections Over 4 Days (AP: C2 Comms)

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname (AP: C2 Comms)

·       Anomalous Server Activity / Outgoing from Server (AP: C2 Comms)

·       Compromise / High Volume of Connections with Beacon Score (AP: C2 Comms)

·       Compromise / Large Number of Suspicious Failed Connections (AP: C2 Comms)

·       Email Nexus / Connection to Hijacked Correspondent Link

·       Compromise / Suspicious TLS Beaconing To Rare External (AP: C2 Comms)

·       Compromise / Quick and Regular Windows HTTP Beaconing (AP: C2 Comms)

List of IoCs

IoC - Type - Description + Confidence

cyberhavenext[.]pro - Hostname - Used for C2 communications and data exfiltration (cookies and session tokens)

149.28.124[.]84 - IP - Associated with malicious infrastructure

45.76.225[.]148 - IP - Associated with malicious infrastructure

136.244.115[.]219 - IP - Associated with malicious infrastructure

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

INITIAL ACCESS - T1176 - Browser Extensions

EXECUTION - T1204.002 - Malicious Browser Extensions

PERSISTENCE - T1176 - Browser Extensions

COMMAND AND CONTROL - T1071.001 - Web Protocols

COMMAND AND CONTROL - T1001 - Data Obfuscation

CREDENTIAL ACCESS - T1539 - Steal Web Session Cookie

DISCOVERY - T1518.001 - Security Software Discovery

LATERAL MOVEMENT - T1557.003 - Man-in-the-Browser

EXFILTRATION - T1041 - Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 - Exfiltration to Cloud Storage

IMPACT - T1583.006 - Session Hijacking

References

[1] https://thehackernews.com/2024/12/16-chrome-extensions-hacked-exposing.html

[2] https://www.cyberhaven.com/blog/cyberhavens-chrome-extension-security-incident-and-what-were-doing-about-it

[3] https://www.infosecurity-magazine.com/news/chrome-browser-extensions-hijacked/

[4] https://www.theverge.com/2024/12/28/24330758/chrome-extension-cyberhaven-hijack-phishing-cyberattack-facebook-ads-authentication-theft

[5] https://www.virustotal.com/gui/domain/cyberhavenext.pro

[6] https://darktrace.com/blog/balada-injector-darktraces-investigation-into-the-malware-exploiting-wordpress-vulnerabilities

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

/

Email

/

March 19, 2025

Global Technology Provider Transforms Email Threat Detection with Darktrace

Default blog imageDefault blog image

At a glance

  • Within just one month of using Darktrace / EMAIL, the volume of suspicious emails requiring analyst attention dropped by 75%, saving analysts 45 hours per month on analysis and investigation.
  • By offloading most manual, repetitive tasks to Darktrace / EMAIL, the company’s skilled security analysts can focus on developing new capabilities and tackling more complex, rewarding projects.
  • Darktrace recently detected and blocked a highly sophisticated and personalized phishing email that spoofed a Microsoft SharePoint and Teams website and used advanced engineering to impersonate the school of an employee’s family member.
  • The transition from the incumbent solution to Darktrace / EMAIL was seamless and undetectable to the company’s vast of customers and partners, reinforcing the security organization’s role as a business enabler—protecting the company and reducing risk without adding friction.

Securing a complex, distributed business without disruption

The company remains at the forefront of technological innovation and transformation; however, its success and ambitions come with the challenges of managing a distributed global business—balancing digital advancements, existing technology investments, and evolving compliance requirements.

Optimizing a complex tech stack for scalable growth

The organization operates a diverse technology stack spanning Windows, Mac, Linux, and multiple cloud environments, creating a complex and challenging IT landscape. The company’s Chief Information Security Officer (CISO) emphasizes the need for efficiency and agility. “Our goal is to scale and deliver new capabilities without increasing headcount, ensuring that costs remain proportionate to growth.”

Balancing security, governance, and business agility

Committed to responsible practices, this industry leader prioritizes secure and trustworthy technology for its customers who rely on its solutions. “Balancing business agility with governance is a constant challenge," said the CISO. "There’s always a natural push and pull, which I believe is healthy—but achieving the right balance is delicate.”

Protecting critical workflows without impacting productivity

For the organization, email is much more than just a communication tool. “Email plays a critical role in our engineering workflows and is fundamental to how we build our products.” Because of this, the company is extremely cautious about implementing any solution that could introduce friction or disrupt productivity. “There is zero tolerance for disruption, which is why we take a deliberate and methodical approach when evaluating, selecting, and deploying our tools and solutions,” he said.  

More than a vendor: A security partner invested in success

To ensure an optimal security infrastructure, the enterprise security team regularly evaluates market technologies to their existing solutions. With the rapidly evolving threat landscape, the CISO said they “wanted to validate whether we still had best-in-class protection and the right controls in place to secure our organization. It was about assessing whether we could do better in our ongoing effort to fine-tuning our approach to achieve the best possible outcome.”

The team evaluated 15 different email security vendors based on the following criteria:

  1. Efficacy to detect threats
  2. Ability to integrate with existing tooling
  3. Ease of use
  4. A vendor’s approach to partnership  

They initially narrowed the list to five vendors, conducting demo sessions for deeper evaluations before selecting three finalists for a proof of value (POV). We analyzed actual malicious emails with each vendor to assess the accuracy of their detections, allowing for an objective comparison,” said the CISO. Through this rigorous process, the Darktrace / EMAIL security solution emerged as the best fit for their business. “Darktrace’s product performed well and showed a genuine commitment to partnering with us in the long-term to ensure our success.”

The team objectively understood where there were gaps across the different vendors, where they were strong, and where they could use improvement. “Based on the analysis, we knew that Darktrace / EMAIL could deliver as the data supported it, in our specific use cases.  

Partnership, integrity and respect

Throughout the evaluation process, the importance of partnership and mutual respect remained an essential factor to the CISO. “I wanted a company we could develop a long-term strategic partnership with, one that could extend far deeper than just email.” A key factor in choosing Darktrace was the commitment and engagement of its team at every level of the organization. “Darktrace showed integrity, patience and a genuine investment in building a strong relationship with my team.  That's why we're here today.”

“Together, we've delivered some fantastic outcomes”

For the organization, Darktrace / EMAIL has played a crucial role in reducing risk, empowering analysts, and enabling a lean, effective security strategy. “Together, we've delivered some fantastic outcomes,” said the CISO.  

Reducing risk. Empowering analysts

“Within that first month, we saw a 75% drop in suspicious emails that that required manual review, which reduced the time my team spent analyzing and investigating by 45 hours per month,” said the CISO. The security team values Darktrace / EMAIL not only for its ease of use but also for the time it frees up for more meaningful work. “Giving my team the opportunity to tackle complex challenges they enjoy and find more stimulating is important to me.” As they continue to fine-tune and optimize balance levels within Darktrace / EMAIL, he expects even greater efficiency gains in the coming months.

Maximizing protection while staying lean

It’s important for the security group to be proportionate with their spending, said the CISO. “It's all about what is enough security to enable the business. And that means, as our organization grows, it's important that we are as lean and as efficient as possible to deliver the best outcomes for the business.”  Embracing an AI-powered automated approach is an essential component to achieving that goal. By offloading most manual, repetitive tasks to Darktrace / EMAIL, the company’s skilled security analysts can focus on more strategic and proactive initiatives that enable the business.  

Protecting employees from advanced social engineering threats

Recently, Darktrace detected a malicious email targeting an employee, disguised as a spoofed Microsoft SharePoint and Teams website. What made this attack particularly sophisticated was its personalization — it impersonated the school where the employee’s family member attended. Unlike mass malicious emails sent to thousands of people, this was a highly targeted attack, leveraging advanced social engineering tactics to exploit connections within the education system and between family members.  

Protecting without disrupting

A seamless migration is often overlooked but is critical to success for any organization, said the CISO. With a wide ecosystem of partners, email is a highly visible, business-critical function for the organization — "any friction or downtime would have an immediate impact and could throttle the entire business,” he said. However, the transition from their previous solution to Darktrace / EMAIL was exceptionally smooth. “No one realized we changed providers because there was no disruption — no incidents at all. I cannot emphasize just how important that is when I'm trying to position our security organization as an enabling function for the business that protects and reduces risk without adding friction.”

A security partnership for the future

“To survive as a business over the next few years, adopting AI is no longer optional—it’s essential,” said the CISO. However, with the cybersecurity market becoming increasingly saturated, selecting the right solutions and vendors can be overwhelming. He stresses the importance of choosing strategic partners who not only deliver the outcomes you need, but also deeply understand your organization’s unique environment. “You’re only as strong as your partners. Technology innovation and the cybersecurity market are always changing.  At some point every solution will face a challenge—it’s inevitable. The differentiator will be how people respond when that happens.”  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI