Blog
/
Email
/
July 18, 2023

How Darktrace SOC Thwarted a BEC Attack

Discover how Darktrace's SOC detected and stopped a Business Email Compromise in a customer's SaaS environment.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Photo of woman looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023

What is Business Email Compromise (BEC)?

Business Email Compromise (BEC) is the practice of tricking an organization into transferring funds or sensitive data to a malicious actor.

Although at face value this type of attack may not carry the same gravitas as the more blockbuster, cloak-and-dagger type of attack such as ransomware [1], the costs of BEC actually dwarf that of ransomware [2]. Moreover, among UK organizations that reported a cyber breach in 2023, attacks related to BEC – namely phishing attacks, email impersonation, attempted hacking of online back accounts, and account takeover – were reported as the most disruptive, ahead of ransomware and other types of cyber-attack [3].  

What makes a BEC attack successful?

BEC attacks are so successful and damaging due to the difficulty of detection for traditional security systems, along with their ease of execution.  BEC does not require much technical sophistication to accomplish; rather, it exploits humans’ natural trust in known correspondents, via a phishing email for example, to induce them to perform a certain action.

How does a BEC attack work?

BEC attacks typically begin with a phishing email to an employee of an organization. Traditional email gateways may be unable to block the initial phishing email, as the email often appear to have been sent by a known correspondent, or it may contain minimal payload content.

The recipient’s interaction with the initial phishing email will likely result in the attacker gaining access to the user’s identity. Once access is obtained, the attacker may abuse the identity of the compromised user to obtain details of the user’s financial relations to the rest of the organization or its customers, eventually using these details to conduct further malicious email activity, such as sending out emails containing fraudulent wire transfer requests.  Today, the continued growth in adoption of services to support remote working, such as cloud file storage and sharing, means that the compromise of a single user’s email account can also grant access to a wide range of corporate sensitive information.

How to protect against BEC attacks

The rapid uptake of cloud-based infrastructure and software-as-a-service (SaaS) outpaces the adoption of skills and expertise required to secure it, meaning that security teams are often less prepared to detect and respond to cloud-based attacks.  

Alongside the adoption of security measures that specialize in anomaly-based detection and autonomous response, like Darktrace DETECT™ and Darktrace RESPOND™, it is extremely beneficial for organizations to have an around the clock security operations center (SOC) in place to monitor and investigate ongoing suspicious activity as it emerges.

In June 2023, Darktrace’s SOC alerted a customer to an active BEC attack within their cloud environment, following the successful detection of suspicious activity by Darktrace’s AI, playing a fundamental role in thwarting the attack in its early stages.

Darktrace Mitigates BEC Attack

Figure 1: Screenshot of the SaaS Console showing location information for the compromised SaaS account.  The ability to visualize the distance between these two locations enables a SOC Analyst to deduce that the simultaneous activity from London and Derby may represent impossible travel’.

It was suspected the attack began with a phishing email, as on the previous day the user had received a highly anomalous email from an external sender with which the organization had not previously communicated. However, the customer had configured Darktrace/Email™ in passive mode, which meant that Darktrace was not able to carry out any RESPOND actions on this anomalous email to prevent it from landing in the user’s inbox. Despite this, Darktrace/Apps was able to instantly detect the subsequent unusual login to the customer’s SaaS environment; its anomaly-based approach to threat detection allowed it to recognize the anomalous behavior even though the malicious email had successfully reached the user.

Following the anomalous ExpressVPN login, Darktrace detected further account anomalies originating from another ExpressVPN IP (45.92.229[.]195), as the attacker accessed files over SharePoint.  Notably, Darktrace identified that the logins from ExpressVPN IPs were performed with the software Chrome 114, however, activity from the legitimate account owner prior to these unusual logins was performed using the software Chrome 102. It is unusual for a user to be using multiple browser versions simultaneously, therefore in addition to the observed impossible travel, this further implied the presence of different actors behind the simultaneous account activity.

Figure 2: Screenshot of the Event Log for the compromised SaaS account, showing simultaneous login and file access activity on the account from different browser versions, and thus likely from different devices.

Darktrace identified that the files observed during this anomalous activity referenced financial information and personnel schedules, suggesting that the attacker was performing internal reconnaissance to gather information about sensitive internal company procedures, in preparation for further fraudulent financial activity.

Although the actions taken by the attacker were mostly passive, Darktrace/Apps chained together the multiple anomalies to understand that this pattern of activity was indicative of movement along the cyber kill chain. The multiple model breaches generated by the ongoing unusual activity triggered an Enhanced Monitoring model breach that was escalated to Darktrace’s SOC as the customer had subscribed to Darktrace’s Proactive Threat Notification (PTN) service.  Enhanced Monitoring models detect activities that are more likely to be indicative of compromise.  

Subsequently, Darktrace’s SOC triaged the activity detected on the SaaS account and sent a PTN alert to the customer, advising urgent follow up action.  The encrypted alert contained relevant technical details of the incident that were summarized by an expert Darktrace Analyst, along with recommendations to the customer’s internal SOC team to take immediate action.  Upon receipt and validation of the alert, the customer used Darktrace RESPOND to perform a manual force logout and block access from the external ExpressVPN IP.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have immediately taken action to disable the account after ongoing anomalies were detected from it. However, as the customer only had RESPOND configured in the manual human confirmation model, the expertise of Darktrace’s SOC team was critical in enabling the customer to react and prevent further escalation of post-compromise activity.  Evidence of further attempts to access the compromised account were observed hours after RESPOND actions were taken, including failed login attempts from another rare external IP, this time associated with the VPN service NordVPN.

Figure 3: Timeline of attack and response actions from Darktrace SOC and Darktrace RESPOND.

Because the customer had subscribed to Darktrace’s PTN service, they were able to further leverage the expertise of Darktrace’s global team of cyber analysts and request further analysis of which files were accessed by the legitimate account owner versus the attacker.  This information was shared securely within the same Customer Portal ticket that was automatically opened on behalf of the customer when the PTN was alerted, allowing the customer’s security team to submit further queries and feedback, and request assistance to further investigate this alert within Darktrace. A similar service called Ask the Expert (ATE) exists for customers to draw from the expertise of Darktrace’s analysts at any time, not just when PTNs are alerted.

Conclusion

The growing prevalence and impact of BEC attacks amid the shift to cloud-based infrastructure means that already stretched internal security teams may not have the sufficient human capacity to detect and respond to these threats.

Darktrace’s round-the-clock SOC thwarted a BEC attack that had the potential to result in significant financial and reputational damage to the legal services company, by alerting the customer to high priority activity during the early stages of the attack and sharing actionable insights that the customer could use to prevent further escalation.  Following the confirmed compromise, the support and in-depth analysis provided by Darktrace’s SOC on the files accessed by the attacker enabled the customer to effectively report this breach to the Information Commissioner’s Office, to maintain compliance with UK data protection regulations. [4].  

Although the attacker used IP addresses that were local to the customer’s country of operations and did not perform overtly noisy actions during reconnaissance, Darktrace was able to identify that this activity deviated from the legitimate user’s typical pattern of life, triggering model breaches at each stage of the attack as it progressed from initial access to internal reconnaissance. While Darktrace RESPOND triggered an action that would have prevented the attack autonomously, the customer’s configuration meant that Darktrace’s SOC had an even more significant role in alerting the customer directly to take manual action.

Credit to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

Darktrace DETECT/Apps Models Breached:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs
  • SaaS / Unusual Activity / Multiple Unusual SaaS Activities
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

Darktrace RESPOND/Apps Models Breached:

  • Antigena / SaaS / Antigena Unusual Activity Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Tactic Techniques
Reconnaissance • T1598 – Phishing for Information
Initial Access • T1078.004 – Valid Accounts: Cloud Accounts
Collection • T1213.002 – Data from Information Repositories: Sharepoint

References

[1] Rand, D. (2022, November 10). Why Business Email Compromise Costs Companies More Than Ransomware Attacks. Retrieved from Tanium: https://www.tanium.com/blog/whybusiness-email-compromise-costs-companies-more-than-ransomware-attacks/

[2] Federal Bureau of Investigation. (2022). 2022 IC3 Report. Retrieved from IC3.gov: https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] Department for Science, Innovation & Technology. (2023, April 19). Cyber security breaches survey 2023. Retrieved from gov.uk: https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cybersecurity-breaches-survey-2023

[4] ICO. (2023). Personal data breaches: a guide. Retrieved from Information Commissioner's Office: https://ico.org.uk/for-organisations/report-a-breach/personal-data-breach/personal-data-breaches-a-guide/#whatbreachesdo

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher

Blog

/

/

April 22, 2025

How NDR and Secure Access Service Edge (SASE) Work Together to Achieve Network Security Outcomes

woman looking out at buildingsDefault blog imageDefault blog image

Modern networks are evolving rapidly, with traffic patterns, user behavior, and critical assets extending far beyond the boundaries of traditional network security tools. As organizations adopt hybrid infrastructures, remote working, and cloud-native services, it is essential to maintain visibility and protect this expanding attack surface.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) are two technologies commonly used to safeguard organizational networks. While both play crucial roles in enhancing security, one does not replace the other. Instead, NDR and SASE complement each other, taking on different roles to create a robust network security framework. This blog will unpack the relationship between NDR and SASE, including the component functionalities that comprise SASE, highlighting their unique contributions to maintaining a comprehensive and resilient network security strategy.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) explained

NDR solutions, such as Darktrace / NETWORK, are designed to detect, investigate, and respond to suspicious activities within any network. By leveraging machine learning and behavioral analytics, NDR continuously monitors network traffic to identify anomalies that could indicate potential threats and to contain those threats at machine speed. These solutions analyze both North-South traffic (between internal and external networks) and East-West traffic (within internal networks), providing comprehensive visibility into network activities.

SASE, on the other hand, comprises multiple solutions, focused on providing hybrid and remote users access to services while adhering to the Zero Trust principle of "never trust, always verify". Within SASE architectures, Zero Trust Network Access (ZTNA) solutions provide secure remote access to private applications and services the user has been explicitly granted, and Secure Web Gateways (SWG) provide Internet access, again based on policy groups. Unlike traditional security models that grant implicit trust to users within the network perimeter, ZTNA requires continuous verification of user identity and device health before granting access to resources. This approach minimizes the attack surface and reduces the risk of unauthorized access to sensitive data and internal applications. Similarly, SWGs filter web traffic based on the verified user identity and can block known malware, further reducing the attack surface for the client estate.

Limitations of SASE highlights the importance of NDR

While SASE, including ZTNA and SWG, is a powerful tool for enforcing secure access to company networks and resources as well as the Internet, it is not a comprehensive security solution, or a replacement for dedicated network monitoring and NDR capabilities. Some of the main limitations include:

  • Focused on policies rather than security: SASE delivers strong networking outcomes but provides policy-based protections, rather than a full suite of security features. It can provide simple alerting for disallowed actions, but it lacks the security context needed for comprehensive threat detection, such as knowing if user credentials have been compromised.
  • Can only detect known threats: SASE solutions cannot detect novel attacks such as zero-days and insider threats. This is because they rely on a rule-based approach that does not have a behavioral understanding of network entities that can detect anomalies or suspicious activity.
  • Limited response capabilities: Due to the limited detection capabilities of SASE solutions, it is not possible to automate response actions to threats that slip past existing policies.  While access to internal resources and the Internet can be revoked or severely limited as part of a response, this must be done after human investigation and analysis, allowing more time for the threat to continue before being contained.
  • Limited scope: SASE provides cloud-hosted secure networking, which lends itself much more toward the client estate of any organization. As a result, servers and unmanaged devices—whether IT/IoT/OT—are mostly out of scope and do not benefit from the policies SASE enforces.

The complementary roles of NDR and ZTNA

NDR solutions provide full visibility into network activity, with the ability to detect and respond to threats that may bypass initial access controls and filters. When combined, NDR and SASE create a layered security approach that addresses different aspects of network security, for example:

  • Detection of novel, unknown and insider threats: NDR solutions can monitor all network traffic using behavioral anomaly detection. This can identify suspicious activities, such as insider threats from authorized users who have passed policy checks, or novel attacks that have never been seen before.
  • Validation of policies: By continuously monitoring network traffic, NDR can validate the effectiveness of existing policies and identify any gaps in security that need addressing due to organizational changes or outdated rule sets.
  • Reducing risk and impact of threats: Together, SASE and NDR solutions shift toward proactive security by reducing the potential impact of a threat through predefined policies and by detecting and containing a threat in its earliest stages, even if it is novel or nuanced.
  • Enhanced contextual information: Alerts raised by SASE solutions can provide additional context into potential threats, which can be used by NDR solutions to increase investigation quality and context.
  • Containment of network threats: SASE solutions can prohibit access to resources on an internal company network or on the Internet if predefined access control criteria are not met or a site matches a threat signature. When combined with an NDR solution, organizations can go far beyond this, detecting and responding to a much wider variety of network threats to prevent attacks from escalating.

When implementing SASE and NDR solutions, it is also crucial to consider the best configurations to maximize interoperability, and integrations will often increase functionality. Well-designed implementations, combined with integrations, will strengthen both SASE and NDR solutions for organizations.

How Darktrace continues to secure SASE networks

With the latest 6.3 update, Darktrace continues to extend its capabilities with new innovations that support modern enterprise networks and the use of SASE across remote and hybrid worker devices. This expands on existing Darktrace integrations and partnerships with SASE vendors such as Netskope and Zscaler.

Traditional methods to contain remote access and internet-born threats are either signature or policy based, and response to nuanced threats requires manual, human-led investigation and decision-making. By the time security teams can react, the damage is often already done.

With Darktrace 6.3, customers using Zscaler can now configure Darktrace Autonomous Response to quarantine ZPA-connected user devices at machine speed. This provides a powerful new mechanism for containing remote threats at the earliest sign of suspicious activity, without disrupting broader operations.

By automatically shutting down ZPA access for compromised user accounts, Darktrace gives SOC teams valuable time to investigate and respond, while continuing to protect the rest of the organization. This integration enhances Darktrace’s ability to take actions for remote user devices, helping customers contain threats faster and keep the business running smoothly.

For organizations using SASE technologies to address the challenges of securing large, distributed networks across a range of geographies, SaaS applications and remote worker devices, Darktrace also now integrates with Netskope Cloud TAP to provide visibility into and analysis over tunneled traffic, reducing blind spots and enabling organizations to maintain detection capabilities across their expanding network perimeters.

Conclusion

While NDR and ZTNA serve distinct purposes, their integration is crucial for a comprehensive security strategy. ZTNA provides robust access controls, ensuring that only authorized users can access network resources. NDR, on the other hand, offers continuous visibility into network activities, detecting and responding to threats that may bypass initial access controls. By leveraging the strengths of both solutions, organizations can enhance their security posture and protect against a wide range of network security threats.

Understanding the complementary roles of NDR and ZTNA is essential for building a resilient security framework. As cyber threats continue to evolve, adopting a multi-layered, defense-in-depth security approach will be key to safeguarding organizational networks.

Click here for more information about the latest product innovations in Darktrace 6.3, or learn more about Darktrace / NETWORK here.

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI