Blog
/
/
July 26, 2022

Self-Learning AI for Zero-Day and N-Day Attack Defense

Explore the differences between zero-day and n-day attacks on different customer servers to learn how Darktrace detects and prevents cyber threats effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022

Key Terms:

Zero-day | A recently discovered security vulnerability in computer software that has no currently available fix or patch. Its name come from the reality that vendors have “zero days” to act and respond.

N-day | A vulnerability that emerges in computer software in which a vendor is aware and may have already issued (or are currently working on) a patch or fix. Active exploits often already exist and await abuse by nefarious actors.

Traditional security solutions often apply signature-based-detection when identifying cyber threats, helping to defend against legacy attacks but consequently missing novel ones. Therefore, security teams often lend a lot of focus to ensuring that the risk of zero-day vulnerabilities is reduced [1]. As explored in this blog, however, organizations can face just as much of a risk from n-day attacks, since they invite the most attention from malicious actors [2]. This is due in part to the reduced complexity, cost and time invested in researching and finding new exploits compared with that found when attackers exploit zero-days. 

This blog will examine both a zero-day and n-day attack that two different Darktrace customers faced in the fall of 2021. This will include the activity Darktrace detected, along with the steps taken by Darktrace/Network to intervene. It will then compare the incidents, discuss the possible dangers of third-party integrations, and assess the deprecation of legacy security tools.

Revisiting zero-day attacks 

Zero-days are among the greatest concerns security teams face in the era of modern technology and networking. Defending critical systems from zero-day compromises is a task most legacy security solutions are often unable to handle. Due to the complexity of uncovering new security flaws and developing elaborate code that can exploit them, these attacks are often carried out by funded or experienced groups such as nation-state actors and APTs. One of history’s most prolific zero-days, ‘Stuxnet’, sent security teams worldwide into a global panic in 2010. This involved a widespread attack on Iranian nuclear infrastructure and was widely accepted to be a result of nation-state actors [3]. The Stuxnet worm took advantage of four zero-day exploits, compromising over 200,000 devices and physically damaging around 10% of the 9,000 critical centrifuges at the Natanz nuclear site. 

More recently, 2021 saw the emergence of several critical zero-day vulnerabilities within SonicWall’s product suite [4]. SonicWall is a security hardware manufacturer that provides hardware firewall devices, unified threat management, VPN gateways and network security solutions. Some of these vulnerabilities lie within their Secure Mobile Access (SMA) 100 series (for example, CVE-2019-7481, CVE-2021-20016 and CVE-2021-20038 to name a few). These directly affected VPN devices and often allowed attackers easy remote access to company devices. CVE-2021-20016 in particular incorporates an SQL-Injection vulnerability within SonicWall’s SSL VPN SMA 100 product line [5]. If exploited, this defect would allow an unauthenticated remote attacker to perform their own malicious SQL query in order to access usernames, passwords and other session related information. 

The N-day underdog

The shadow cast by zero-day attacks often shrouds that of n-day attacks. N-days, however, often pose an equal - if not greater - risk to the majority of organizations, particularly those in industrial sectors. Since these vulnerabilities have fixes available, all of the hard work around research is already done; malicious actors only need to view proof of concepts (POCs) or, if proficient in coding, reverse-engineer software to reveal code-changes (binary diffing) in order to exploit these security flaws in the wild. These vulnerabilities are typically attributed to opportunistic hackers and script-kiddies, where little research or heavy lifting is required.  

August 2021 gave rise to a critical vulnerability in Atlassian Confluence servers, namely CVE-2021-26084 [6]. Confluence is a widely used collaboration wiki tool and knowledge-sharing platform. As introduced and discussed a few months ago in a previous Darktrace blog (Explore Internet-Facing System Vulnerabilities), this vulnerability allows attackers to remotely execute code on internet-facing servers after exploiting injection vulnerabilities in Object-Graph Navigation Language (OGNL). Whilst Confluence had patches and fixes available to users, attackers still jumped on this opportunity and began scanning the internet for signs of critical devices serving this outdated software [7]. Once identified, they would  exploit the vulnerability, often installing crypto mining software onto the device. More recently, Darktrace explored a new vulnerability (CVE-2022-26134), disclosed midway through 2022, that affected Confluence servers and data centers using similar techniques to that found in CVE-2021-26084 [8]. 

SonicWall in the wild – 1. Zero-day attack

At the beginning of August 2021, Darktrace prevented an attack from taking place within a European automotive customer’s environment (Figure 1). The attack targeted a vulnerable internet-facing SonicWall VPN server, and while the attacker’s motive remains unclear, similar historic events suggest that they intended to perform ransomware encryption or data exfiltration. 

Figure 1: Timeline of the SonicWall attack 

Darktrace was unable to confirm the definite tactics, techniques and procedures (TTPs) used by the attacker to compromise the customer’s environment, as the device was compromised before Darktrace installation and coverage. However, from looking at recently disclosed SonicWall VPN vulnerabilities and patterns of behaviour, it is likely CVE-2021-20016 played a part. At some point after this initial infection, it is also believed the device was able to move laterally to a domain controller (DC) using administrative credentials; it was this server that then initiated the anomalous activity that Darktrace detected and alerted on. 

On August 5th 2021 , Darktrace observed this compromised domain controller engaging in unusual ICMP scanning - a protocol used to discover active devices within an environment and create a map of an organization’s network topology. Shortly after, the infected server began scanning devices for open RDP ports and enumerating SMB shares using unorthodox methods. SMB delete and HTTP requests (over port 445 and 80 respectively) were made for files named delete.me in the root directory of numerous network shares using the user agent Microsoft WebDAV. However, no such files appeared to exist within the environment. This may have been the result of an attacker probing devices in the network in an effort to see their responses and gather information on properties and vulnerabilities they could later exploit. 

Soon the infected DC began establishing RDP tunnels back to the VPN server and making requests to an internal DNS server for multiple endpoints relating to exploit kits, likely in an effort to strengthen the attacker’s foothold within the environment. Some of the endpoints requested relate to:

-       EternalBlue vulnerability 

-       Petit Potam NTLM hash attack tool

-       Unusual GitHub repositories

-       Unusual Python repositories  

The DC made outgoing NTLM requests to other internal devices, implying the successful installation of Petit Potam exploitation tools. The server then began performing NTLM reconnaissance, making over 1,000 successful logins under ‘Administrator’ to several other internal devices. Around the same time, the device was also seen making anonymous SMBv1 logins to numerous internal devices, (possibly symptomatic of the attacker probing machines for EternalBlue vulnerabilities). 

Interestingly, the device also made numerous failed authentication attempts using a spoofed credential for one of the organization’s security managers. This was likely in an attempt to hide themselves using ‘Living off the Land’ (LotL) techniques. However, whilst the attacker clearly did their research on the company, they failed to acknowledge the typical naming convention used for credentials within the environment. This ultimately backfired and made the compromise more obvious and unusual. 

In the morning of the following day, the initially compromised VPN server began conducting further reconnaissance, engaging in similar activity to that observed by the domain controller. Until now, the customer had set Darktrace RESPOND to run in human confirmation mode, meaning interventions were not made autonomously but required confirmation by a member of the internal security team. However, thanks to Proactive Threat Notifications (PTNs) delivered by Darktrace’s dedicated SOC team, the customer was made immediately aware of this unusual behaviour, allowing them to apply manual Darktrace RESPOND blocks to all outgoing connections (Figure 2). This gave the security team enough time to respond and remediate before serious damage could be done.

Figure 2: Darktrace RESPOND model breach showing the manually applied “Quarantine Device” action taken against the compromised VPN server. This screenshot displays the UI from Darktrace version 5.1

Confluence in the wild – 2. N-day attack

Towards the end of 2021, Darktrace saw a European broadcasting customer leave an Atlassian Confluence internet-facing server unpatched and vulnerable to crypto-mining malware using CVE-2021-26084. Thanks to Darktrace, this attack was entirely immobilized within only a few hours of the initial infection, protecting the organization from damage (Figure 3). 

Figure 3: Timeline of the Confluence attack

On midday on September 1st 2021, an unpatched Confluence server was seen receiving SSL connections over port 443 from a suspicious new endpoint, 178.238.226[.]127.  The connections were encrypted, meaning Darktrace was unable to view the contents and ascertain what requests were being made. However, with the disclosure of CVE-2021-26084 just 7 days prior to this activity, it is likely that the TTPs used involved injecting OGNL expressions to Confluence server memory; allowing the attacker to remotely execute code on the vulnerable server.

Immediately after successful exploitation of the Confluence server, the infected device was observed making outgoing HTTP GET requests to several external endpoints using a new user agent (curl/7.61.1). Curl was used to silently download and configure multiple suspicious files relating to XMRig cryptocurrency miner, including ld.sh, XMRig and config.json. Subsequent outgoing connections were then made to europe.randomx-hub.miningpoolhub[.]com · 172.105.210[.]117 using the JSON-RPC protocol, seen alongside the mining credential maillocal.confluence (Figure 4). Only 3 seconds after initial compromise, the infected device began attempting to mine cryptocurrency using the Minergate protocol but was instantly and autonomously blocked by Darktrace RESPOND. This prevented the server from abusing system resources and generating profits for the attacker.

Figure 4: A graph showing the frequency of external connections using the JSON-RPC protocol made by the breach device over a 48-hour window. The orange-red dots represent models that breached as a result of this activity, demonstrating the “waterfall” effect commonly seen when a device suffers a compromise. This screenshot displays the UI from Darktrace version 5.1

In the afternoon, the malware persisted with its infection. The compromised server began making successive HTTP GET requests to a new rare endpoint 195.19.192[.]28 using the same curl user agent (Figures 5 & 6). These requests were for executable and dynamic library files associated with Kinsing malware (but fortunately were also blocked by Darktrace RESPOND). Kinsing is a malware strain found in numerous attack campaigns which is often associated with crypto-jacking, and has appeared in previous Darktrace blogs [9].

Figure 5: Cyber AI Analyst summarising the unusual download of Kinsing software using the new curl user agent. This screenshot displays the UI from Darktrace version 5.1

The attacker then began making HTTP POST requests to an IP 185.154.53[.]140, using the same curl user agent; likely a method for the attacker to maintain persistence within the network and establish a foothold using its C2 infrastructure. The Confluence server was then again seen attempting to mine cryptocurrency using the Minergate protocol. It made outgoing JSON-RPC connections to a different new endpoint, 45.129.2[.]107, using the following mining credential: ‘42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWJk6HJDWzixDLmU2Ar47PUNS5XHv4Kmfdh8aA9fbZmKHwfmFo8Wup8YtS5Kdqh2’. This was once again blocked by Darktrace RESPOND (Figure 7). 

Figure 6: VirusTotal showing the unusualness of one of these external IPs [10]
Figure 7: Log data showing the action taken by Darktrace RESPOND in response to the device breaching the “Crypto Currency Mining Activity” model. This screenshot displays the UI from Darktrace version 5.1

The final activity seen from this device involved the download of additional shell scripts over HTTP associated with Kinsing, namely spre.sh and unk.sh, from 194.38.20[.]199 and 195.3.146[.]118 respectively (Figure 8). A new user agent (Wget/1.19.5 (linux-gnu)) was used when connecting to the latter endpoint, which also began concurrently initiating repeated connections indicative of C2 beaconing. These scripts help to spread the Kinsing malware laterally within the environment and may have been the attacker's last ditch efforts at furthering their compromise before Darktrace RESPOND blocked all connections from the infected Confluence server [11]. With Darktrace RESPOND's successful actions, the customer’s security team were then able to perform their own response and remediation. 

Figure 8: Cyber AI Analyst revealing the last ditch efforts made by the threat actor to download further malicious software. This screenshot displays the UI from Darktrace version 5.1

Darktrace Coverage: N- vs Zero-days

In the SonicWall case the attacker was unable to achieve their actions on objectives (thanks to Darktrace's intervention). However, this incident displayed tactics of a more stealthy and sophisticated attacker - they had an exploited machine but waited for the right moment to execute their malicious code and initiate a full compromise. Due to the lack of visibility over attacker motive, it is difficult to deduce what type of actor led to this intrusion. However, with the disclosure of a zero-day vulnerability (CVE-2021-20016) not long before this attack, along with a seemingly dormant initially compromised device, it is highly possible that it was carried out by a sophisticated cyber criminal or gang. 

On the other hand, the Confluence case engaged in a slightly more noisy approach; it dropped crypto mining malware on vulnerable devices in the hope that the target’s security team did not maintain visibility over their network or would merely turn a blind eye. The files downloaded and credentials observed alongside the mining activity heavily imply the use of Kinsing malware [11]. Since this vulnerability (CVE-2021-26084) emerged as an n-day attack with likely easily accessible POCs, as well as there being a lack of LotL techniques and the motive being long term monetary gain, it is possible this attack was conducted by a less sophisticated or amateur actor (script-kiddie); one that opportunistically exploits known vulnerabilities in internet-facing devices in order to make a quick profit [12].

Whilst Darktrace RESPOND was enabled in human confirmation mode only during the start of the SonicWall attack, Darktrace’s Cyber AI Analyst still offered invaluable insight into the unusual activity associated with the infected machines during both the Confluence and SonicWall compromises. SOC analysts were able to see these uncharacteristic behaviours and escalate the incident through Darktrace’s PTN and ATE services. Analysts then worked through these tickets with the customers, providing support and guidance and, in the SonicWall case, quickly helping to configure Darktrace RESPOND. In both scenarios, Darktrace RESPOND was able to block abnormal connections and enforce a device’s pattern of life, affording the security team enough time to isolate the infected machines and prevent further threats such as ransomware detonation or data exfiltration. 

Concluding thoughts and dangers of third-party integrations 

Organizations with internet-facing devices will inevitably suffer opportunistic zero-day and n-day attacks. While little can be done to remove the risk of zero-days entirely, ensuring that organizations keep their systems up to date will at the very least help prevent opportunistic and script-kiddies from exploiting n-day vulnerabilities.  

However, it is often not always possible for organizations to keep their systems up to date, especially for those who require continuous availability. This may also pose issues for organizations that rely on, and put their trust in, third party integrations such as those explored in this blog (Confluence and SonicWall), as enforcing secure software is almost entirely out of their hands. Moreover, with the rising prevalence of remote working, it is essential now more than ever that organizations ensure their VPN devices are shielded from external threats, guidance on which has been released by the NSA/CISA [13].

These two case studies have shown that whilst organizations can configure their networks and firewalls to help identify known indicators of compromise (IoC), this ‘rearview mirror’ approach will not account for, or protect against, any new and undisclosed IoCs. With the aid of Self-Learning AI and anomaly detection, Darktrace can detect the slightest deviation from a device’s normal pattern of life and respond autonomously without the need for rules and signatures. This allows for the disruption and prevention of known and novel attacks before irreparable damage is caused- reassuring security teams that their digital estates are secure. 

Thanks to Paul Jennings for his contributions to this blog.

Appendices: SonicWall (Zero-day)

Darktrace model detections

·      AIA / Suspicious Chain of Administrative Credentials

·      Anomalous Connection / Active Remote Desktop Tunnel

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Unusual Internal Remote Desktop

·      Compliance / High Priority Compliance Model Breach

·      Compliance / Outgoing NTLM Request from DC

·      Device / Anomalous RDP Followed By Multiple Model Breaches

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / ICMP Address Scan

·      Device / Large Number of Model Breaches

·      Device / Large Number of Model Breaches from Critical Network Device

·      Device / Multiple Lateral Movement Model Breaches (PTN/Enhanced Monitoring model)

·      Device / Network Scan

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / RDP Scan

·      Device / Reverse DNS Sweep

·      Device / SMB Session Bruteforce

·      Device / Suspicious Network Scan Activity (PTN/Enhanced Monitoring model)

·      Unusual Activity / Possible RPC Recon Activity

Darktrace RESPOND (Antigena) actions (as displayed in example)

·      Antigena / Network / Manual / Quarantine Device

MITRE ATT&CK Techniques Observed
IoCs

Appendices: Confluence (N-day)

Darktrace model detections

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Script from Rare Location

·      Compliance / Crypto Currency Mining Activity

·      Compromise / High Priority Crypto Currency Mining (PTN/Enhanced Monitoring model)

·      Device / Initial Breach Chain Compromise (PTN/Enhanced Monitoring model)

·      Device / Internet Facing Device with High Priority Alert

·      Device / New User Agent

Darktrace RESPOND (Antigena) actions (displayed in example)

·      Antigena / Network / Compliance / Antigena Crypto Currency Mining Block

·      Antigena / Network / External Threat / Antigena File then New Outbound Block

·      Antigena / Network / External Threat / Antigena Suspicious Activity Block

·      Antigena / Network / External Threat / Antigena Suspicious File Block

·      Antigena / Network / Significant Anomaly / Antigena Block Enhanced Monitoring

MITRE ATT&CK Techniques Observed
IOCs

References:

[1] https://securitybrief.asia/story/why-preventing-zero-day-attacks-is-crucial-for-businesses

[2] https://electricenergyonline.com/energy/magazine/1150/article/Security-Sessions-More-Dangerous-Than-Zero-Days-The-N-Day-Threat.htm

[3] https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[4] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SonicWall+2021 

[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016

[6] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26084

[7] https://www.zdnet.com/article/us-cybercom-says-mass-exploitation-of-atlassian-confluence-vulnerability-ongoing-and-expected-to-accelerate/

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26134

[9] https://attack.mitre.org/software/S0599/

[10] https://www.virustotal.com/gui/ip-address/195.19.192.28/detection 

[11] https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[12] https://github.com/alt3kx/CVE-2021-26084_PoC

[13] https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/2791320/nsa-cisa-release-guidance-on-selecting-and-hardening-remote-access-vpns/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

August 15, 2025

From Exploit to Escalation: Tracking and Containing a Real-World Fortinet SSL-VPN Attack

Fortinet SSL-VPN AttackDefault blog imageDefault blog image

Threat actors exploiting Fortinet CVEs

Over the years, Fortinet has issued multiple alerts about a wave of sophisticated attacks targeting vulnerabilities in its SSL-VPN infrastructure. Despite the release of patches to address these vulnerabilities, threat actors have continued to exploit a trio of Common Vulnerabilities and Exposures (CVEs) disclosed between 2022 and 2024 to gain unauthorized access to FortiGate devices.

Which vulnerabilities are exploited?

The vulnerabilities—CVE-2022-42475, CVE-2023-27997, and CVE-2024-21762—affect Fortinet’s SSL-VPN services and have been actively exploited by threat actors to establish initial access into target networks.

The vulnerabilities affect core components of FortiOS, allowing attackers to execute remote code on affected systems.

CVE-2022-42475

Type: Heap-Based Buffer Overflow in FortiOS SSL-VPN

Impact: Remote Code Execution (Actively Exploited)

This earlier vulnerability also targets the SSL-VPN interface and has been actively exploited in the wild. It allows attackers to execute arbitrary code remotely by overflowing a buffer in memory, often used to deploy malware or establish persistent backdoors [6].

CVE-2023-27997

Type: Heap-Based Buffer Overflow in FortiOS and FortiProxy

Impact: Remote Code Execution

This flaw exists in the SSL-VPN component of both FortiOS and FortiProxy. By exploiting a buffer overflow in the heap memory, attackers can execute malicious code remotely. This vulnerability is particularly dangerous because it can be triggered without authentication, making it ideal for an initial compromise [5].

CVE-2024-21762

Type: Out-of-Bounds Write in sslvpnd

Impact: Remote Code Execution

This vulnerability affects the SSL-VPN daemon (sslvpnd) in FortiOS. It allows unauthenticated remote attackers to send specially crafted HTTP requests that write data outside of allocated memory bounds. This can lead to arbitrary code execution, giving attackers full control over a device [4].

In short, these flaws enable remote attackers to execute arbitrary code without authentication by exploiting memory corruption issues such as buffer overflows and out-of-bounds writes. Once inside, threat actors use symbolic link (symlink) in order to maintain persistence on target devices across patches and firmware updates. This persistence then enables them to bypass security controls and manipulate firewall configurations, effectively turning patched systems into long-term footholds for deeper network compromise [1][2][3].

Darktrace’s Coverage

Darktrace detected a series of suspicious activities originating from a compromised Fortinet VPN device, including anomalous HTTP traffic, internal network scanning, and SMB reconnaissance, all indicative of post-exploitation behavior. Following initial detection by Darktrace’s real-time models, its Autonomous Response capability swiftly acted on the malicious activity, blocking suspicious connections and containing the threat before further compromise could occur.

Further investigation by Darktrace’s Threat Research team uncovered a stealthy and persistent attack that leveraged known Fortinet SSL-VPN vulnerabilities to facilitate lateral movement and privilege escalation within the network.

Phase 1: Initial Compromise – Fortinet VPN Exploitation

The attack on a Darktrace customer likely began on April 11 with the exploitation of a Fortinet VPN device running an outdated version of FortiOS. Darktrace observed a high volume of HTTP traffic originating from this device, specifically targeting internal systems. Notably, many of these requests were directed at the /cgi-bin/ directory,  a common target for attackers attempting to exploit web interfaces to run unauthorized scripts or commands. This pattern strongly indicated remote code execution attempts via the SSL-VPN interface [7].

Once access was gained, the threat actor likely modified existing firewall rules, a tactic often used to disable security controls or create hidden backdoors for future access. While Darktrace does not have direct visibility into firewall configuration changes, the surrounding activity and post-exploitation behavior indicated that such modifications were made to support long-term persistence within the network.

HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080.
Figure 1: HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080

Phase 2: Establishing Persistence & Lateral Movement

Shortly after the initial compromise of the Fortinet VPN device, the threat actor began to expand their foothold within the internal network. Darktrace detected initial signs of network scanning from this device, including the use of Nmap to probe the internal environment, likely in an attempt to identify accessible services and vulnerable systems.

Darktrace’s detection of unusual network scanning activities on the affected device.
Figure 2: Darktrace’s detection of unusual network scanning activities on the affected device.

Around the same time, Darktrace began detecting anomalous activity on a second device, specifically an internal firewall interface device. This suggested that the attacker had established a secondary foothold and was leveraging it to conduct deeper reconnaissance and move laterally through the network.

In an effort to maintain persistence within the network, the attackers likely deployed symbolic links in the SSL-VPN language file directory on the Fortinet device. While Darktrace did not directly observe symbolic link abuse, Fortinet has identified this as a known persistence technique in similar attacks [2][3]. Based on the observed post-exploitation behavior and likely firewall modifications, it is plausible that such methods were used here.

Phase 3: Internal Reconnaissance & Credential Abuse

With lateral movement initiated from the internal firewall interface device, the threat actor proceeded to escalate their efforts to map the internal network and identify opportunities for privilege escalation.

Darktrace observed a successful NTLM authentication from the internal firewall interface to the domain controller over the outdated protocol SMBv1, using the account ‘anonymous’. This was immediately followed by a failed NTLM session connection using the hostname ‘nmap’, further indicating the use of Nmap for enumeration and brute-force attempts. Additional credential probes were also identified around the same time, including attempts using the credential ‘guest’.

Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.
Figure 3: Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.

The attacker then initiated DCE_RPC service enumeration, with over 300 requests to the Endpoint Mapper endpoint on the domain controller. This technique is commonly used to discover available services and their bindings, often as a precursor to privilege escalation or remote service manipulation.

Over the next few minutes, Darktrace detected more than 1,700 outbound connections from the internal firewall interface device to one of the customer’s subnets. These targeted common services such as FTP (port 21), SSH (22), Telnet (23), HTTP (80), and HTTPS (443). The threat actor also probed administrative and directory services, including ports 135, 137, 389, and 445, as well as remote access via RDP on port 3389.

Further signs of privilege escalation attempts were observed with the detection of over 300 Netlogon requests to the domain controller. Just over half of these connections were successful, indicating possible brute-force authentication attempts, credential testing, or the use of default or harvested credentials.

Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.
Figure 4: Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.

Phase 4: Privilege Escalation & Remote Access

A few minutes later, the attacker initiated an RDP session from the internal firewall interface device to an internal server. The session lasted over three hours, during which more than 1.5MB of data was uploaded and over 5MB was downloaded.

Notably, no RDP cookie was observed during this session, suggesting manual access, tool-less exploitation, or a deliberate attempt to evade detection. While RDP cookie entries were present on other occasions, none were linked to this specific session—reinforcing the likelihood of stealthy remote access.

Additionally, multiple entries during and after this session show SSL certificate validation failures on port 3389, indicating that the RDP connection may have been established using self-signed or invalid certificates, a common tactic in unauthorized or suspicious remote access scenarios.

Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.
Figure 5: Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.

Darktrace Autonomous Response

Throughout the course of this attack, Darktrace’s Autonomous Response capability was active on the customer’s network. This enabled Darktrace to autonomously intervene by blocking specific connections and ports associated with the suspicious activity, while also enforcing a pre-established “pattern of life” on affected devices to ensure they were able to continue their expected business activities while preventing any deviations from it. These actions were crucial in containing the threat and prevent further lateral movement from the compromised device.

Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.
Figure 6: Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.

Conclusion

This incident highlights the importance of important staying on top of patching and closely monitoring VPN infrastructure, especially for internet-facing systems like Fortinet devices. Despite available patches, attackers were still able to exploit known vulnerabilities to gain access, move laterally and maintain persistence within the customer’s network.

Attackers here demonstrated a high level of stealth and persistence. Not only did they gain access to the network and carry out network scans and lateral movement, but they also used techniques such as symbolic link abuse, credential probing, and RDP sessions without cookies to avoid detection.  Darktrace’s detection of the post-exploitation activity, combined with the swift action of its Autonomous Response technology, successfully blocked malicious connections and contained the attack before it could escalate

Credit to Priya Thapa (Cyber Analyst), Vivek Rajan (Cyber Analyst), and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Model Alerts

·      Device / Suspicious SMB Scanning Activity

·      Device / Anomalous Nmap Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / ICMP Address Scan

Autonomous Response Model Alerts:  

·      Antigena / Network / Insider Threat / Antigena Network Scan Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

MITRE ATT&CK Mapping

Initial Access – External Remote Services – T1133

Initial Access – Valid Accounts – T1078

Execution – Exploitation for Client Execution – T1203

Persistence – Account Manipulation – T1098

Persistence – Application Layer Protocol – T1071.001

Privilege Escalation – Exploitation for Privilege Escalation – T1068

Privilege Escalation – Valid Accounts – T1078

Defense Evasion – Masquerading – T1036

Credential Access – Brute Force – T1110

Discovery – Network Service Scanning – T1046

Discovery – Remote System Discovery – T1018

Lateral Movement – Remote Services – T1021

Lateral Movement – Software Deployment Tools – T1072

Collection – Data from Local System – T1005

Collection – Data Staging – T1074

Exfiltration – Exfiltration Over Alternative Protocol – T1048

References

[1]  https://www.tenable.com/blog/cve-2024-21762-critical-fortinet-fortios-out-of-bound-write-ssl-vpn-vulnerability

[2] https://thehackernews.com/2025/04/fortinet-warns-attackers-retain.html

[3] https://www.cisa.gov/news-events/alerts/2025/04/11/fortinet-releases-advisory-new-post-exploitation-technique-known-vulnerabilities

[4] https://www.fortiguard.com/psirt/FG-IR-24-015

[5] https://www.tenable.com/blog/cve-2023-27997-heap-based-buffer-overflow-in-fortinet-fortios-and-fortiproxy-ssl-vpn-xortigate

[6]  https://www.tenable.com/blog/cve-2022-42475-fortinet-patches-zero-day-in-fortios-ssl-vpns

[7] https://www.fortiguard.com/encyclopedia/ips/12475

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Priya Thapa
Cyber Analyst

Blog

/

/

August 15, 2025

How Organizations are Addressing Cloud Investigation and Response

Cloud investigation and responseDefault blog imageDefault blog image

Why cloud investigation and response needs to evolve

As organizations accelerate their move to the cloud, they’re confronting two interrelated pressures: a rapidly expanding attack surface and rising regulatory scrutiny. The dual pressure is forcing security practitioners to evolve their strategies in the cloud, particularly around investigation and response, where we see analysts spending the most time. This work is especially difficult in the cloud, often requiring experienced analysts to manually stitch together evidence across fragmented systems, unfamiliar platforms, and short-lived assets.

However, adapting isn’t easy. Many teams are operating with limited budgets and face a shortage of cloud-specific security talent. That’s why more organizations are now prioritizing tools that not only deliver deep visibility and rapid response in the cloud, but also help upskill their analysts to keep pace with threats and compliance demands.

Our 2024 survey report highlights just how organizations are recognizing gaps in their cloud security, feeling the heat from regulators, and making significant investments to bolster their cloud investigation capabilities.

In this blog post, we’ll explore the current challenges, approaches, and strategies organizations are employing to enhance their cloud investigation and incident response.

Recognizing the gaps in current cloud investigation and response methods

Complex environments & static tools

Due to the dynamic nature of cloud infrastructure, ephemeral assets, autoscaling environments, and multi-cloud complexity, traditional investigation and response methods which rely on static snapshots and point-in-time data, are fundamentally mismatched. And with Cloud environment APIs needing deep provider knowledge and scripting skills to extract much needed evidence its unrealistic for one person to master all aspects of cloud incident response.

Analysts are still stitching together logs from fragmented systems, manually correlating events, and relying on post-incident forensics that often arrive too late to drive meaningful response. These approaches were built for environments that rarely changed. In the cloud, where assets may only exist for minutes and attacker movement can span regions or accounts in seconds, point-in-time visibility simply can’t keep up. As a result, critical evidence is missed, timelines are incomplete, and investigations drag on longer than they should.

Even some modern approaches still depend heavily on static configurations, delayed snapshots, or siloed visibility that can’t keep pace with real-time attacker movement.

There is even the problem of  identifying what cloud data sources hold the valuable information needed to investigate in the first place. With AWS alone having over 200 products, each with its own security practices and data sources.It can be challenging to identify where you need to be looking.  

To truly secure the cloud, investigation and response must be continuous, automated, and context-rich. Tools should be able to surface the signal from the noise and support analysts at every step, even without deep forensics expertise.

Increasing compliance pressure

With the rise of data privacy regulations and incident reporting mandates worldwide, organizations face heightened scrutiny. Noncompliance can lead to severe penalties, making it crucial to have robust cloud investigation and response mechanisms in place. 74% of organizations surveyed reported that data privacy regulations complicate incident response, underscoring the urgency to adapt to regulatory requirements.

In addition, a majority of organizations surveyed (89%) acknowledged that they suffer damage before they can fully contain and investigate incidents, particularly in cloud environments, highlighting the need for enhanced cloud capabilities.  

Enhancing cloud investigation and response

To address these challenges, organizations are actively growing their capabilities to perform investigations in the cloud. Key steps include:

Allocating and increasing budgets:  

Recognizing the importance of cloud-specific investigation tools, many organizations have started to allocate dedicated budgets for cloud forensics. 83% of organizations have budgeted for cloud forensics, with 77% expecting this budget to increase. This reflects a strong commitment to improving cloud security.

Implementing automation that understands cloud behavior

Automation isn’t just about speeding up tasks. While modern threats require speed and efficiency from defenders, automation aims to achieve this by enabling consistent decision making across unique and dynamic environments. Traditional SOAR platforms, often designed for static on-prem environments, struggle to keep pace with the dynamic and ephemeral nature of the cloud, where resources can disappear before a human analyst even has a chance to look at them. Cloud-native automation, designed to act on transient infrastructure and integrate seamlessly with cloud APIs, is rapidly emerging as the more effective approach for real-time investigation and response. Automation can cover collection, processing, and storage of incident evidence without ever needing to wait for human intervention and the evidence is ready and waiting all in once place, regardless of if the evidence is cloud-provider logs, disk images, or  memory dumps. With the right automation tools you can even go further and automate the full process from end to end covering acquisition, processing, analysis, and response.

Artificial Intelligence (AI) that augments analysts’ intuition not just adds speed

While many vendors tout AI’s ability to “analyze large volumes of data,” that’s table stakes. The real differentiator is how AI understands the narrative of an incident, surfacing high-fidelity alerts, correlating attacker movement across cloud and hybrid environments, and presenting findings in a way that upskills rather than overwhelms analysts.  

In this space, AI isn’t just accelerating investigations, it’s democratizing them by reducing the reliance on highly specialized forensic expertise.  

Strategies for effective cloud investigation and response

Organizations are also exploring various strategies to optimize their cloud investigation and response capabilities:

Enhancing visibility and control:

  • Unified platforms: Implementing platforms that provide a unified view across multiple cloud environments can help organizations achieve better visibility and control. This consolidation reduces the complexity of managing disparate tools and data sources.
  • Improved integration: Ensuring that all security tools and platforms are seamlessly integrated is critical. This integration facilitates better data sharing and cohesive incident management.
  • Cloud specific expertise: Training and Recruitment: Investing in training programs to develop cloud-specific skills among existing staff and recruiting experts with cloud security knowledge can bridge the skill gap.
  • Continuous learning: Given the constantly evolving nature of cloud threats, continuous learning and adaptation are essential for maintaining effective security measures.

Leveraging automation and AI:

  • Automation solutions: Automation solutions for cloud environments can significantly speed up and simplify incident response efficiency. These solutions can handle repetitive tasks, allowing security teams to focus on more complex issues.
  • AI powered analysis: AI can assist in rapidly analyzing incident data, identifying anomalies, and predicting potential threats. This proactive approach can help prevent incidents before they escalate.

Cloud investigation and response with Darktrace

Darktrace’s  forensic acquisition & investigation capabilities helps organizations address the complexities of cloud investigations and incident response with ease. The product seamlessly integrates with AWS, GCP, and Azure, consolidating data from multiple cloud environments into one unified platform. This integration enhances visibility and control, making it easier to manage and respond to incidents across diverse cloud infrastructures.

By leveraging machine learning and automation, Forensic Acquisition & Investigation accelerates the investigation process by quickly analyzing vast amounts of data, identifying patterns, and providing actionable insights. Automation reduces manual effort and response times, allowing your security team to focus on the most pressing issues.

Forensic Acquisition & Investigation can help you stay ahead of threats whilst also meeting regulatory requirements, helping you to maintain a robust cloud security position.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI