Blog
/
Network
/
February 29, 2024

Protecting Against AlphV BlackCat Ransomware

Learn how Darktrace AI is combating AlphV BlackCat ransomware, including the details of this ransomware and how to protect yourself from it.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Feb 2024

As-a-Service malware trending

Throughout the course of 2023, “as-a-Service” strains of malware remained the most consistently observed threat type to affect Darktrace customers, mirroring their overall prominence across the cyber threat landscape. With this trend expected to continue throughout 2024, organizations and their security teams should be prepared to defend their network against increasingly versatile and tailorable malware-as-a-service (MaaS) and ransomware-as-a-service (RaaS) strains [1].

What is ALPHV ransomware?

The ALPHV ransomware, also known as ‘BlackCat’ or ‘Noberus’, is one example of a RaaS strain that has been prominent across the threat landscape over the last few years.

ALPHV is a ransomware strain coded in the Rust programming language. The ransomware is sold as part of the RaaS economy [2], with samples of the ransomware being provided and sold by a criminal group (the RaaS ‘operator’) to other cybercriminals (the RaaS ‘affiliates’) who then gain entry to organizations' networks with the intention of detonating the ransomware and demanding ransom payments.

ALPHV was likely first used in the wild back in November 2021 [3]. Since then, it has become one of the most prolific ransomware strains, with the Federal Bureau of Investigation (FBI) reporting nearly USD 300 million in ALPHV ransom payments as of September 2023 [4].

In December 2023, the FBI and the US Department of Justice announced a successful disruption campaign against the ALPHV group, which included a takedown of the their data leak site, and the release of a decryption tool for the ransomware strain [5], and in February 2024, the US Department of State announced  a reward of up to USD 10 million for information leading to the identification or location of anyone occupying a key leadership position in the group operating the ALPHV ransomware strain [6].

The disruption campaign against the ransomware group appeared to have been successful, as evidenced by the recent, significant decline in ALPHV attacks, however, it would not be surprising for the group to simply return with new branding, in a similar vein to its apparent predecessors, DarkSide and BlackMatter [7].

How does ALPHV ransomware work?

ALPHV affiliates have been known to employ a variety of methods to progress towards their objective of detonating ALPHV ransomware [4]. In the latter half of 2023, ALPHV affiliates were observed using malicious advertising (i.e, malvertising) to deliver a Python-based backdoor-dropper known as 'Nitrogen' to users' devices [8][12]. These malvertising operations consisted in affiliates setting up malicious search engine adverts for tools such as WinSCP and AnyDesk.

Users' interactions with these adverts led them to sites resembling legitimate software distribution sites. Users' attempts to download software from these spoofed sites resulted in the delivery of a backdoor-dropping malware sample dubbed 'Nitrogen' to their devices. Nitrogen has been observed dropping a variety of command-and-control (C2) implants onto users' devices, including Cobalt Strike Beacon and Sliver C2. ALPHV affiliates often used the backdoor access afforded to them by these C2 implants to conduct reconnaissance and move laterally, in preparation for detonating ALPHV ransomware payloads.

Darktrace Detection of ALPHV Ransomware

During October 2023, Darktrace observed several cases of ALPHV affiliates attempting to infiltrate organizations' networks via the use of malvertising to socially engineer users into downloading and installing Nitrogen from impersonation websites such as 'wireshhark[.]com' and wìnscp[.]net (i.e, xn--wnscp-tsa[.]net).

While the attackers managed to bypass traditional security measures and evade detection by using a device from the customer’s IT team to perform its malicious activity, Darktrace DETECT™ swiftly identified the subtle indicators of compromise (IoCs) in the first instance. This swift detection of ALPHV, along with Cyber AI Analyst™ autonomously investigating the wide array of post-compromise activity, provided the customer with full visibility over the attack enabling them to promptly initiate their remediation and recovery efforts.

Unfortunately, in this incident, Darktrace RESPOND™ was not fully deployed within their environment, hindering its ability to autonomously counter emerging threats. Had RESPOND been fully operational here, it would have effectively contained the attack in its early stages, avoiding the eventual detonation of the ALPHV ransomware.

Figure 1: Timeline of the ALPHV ransomware attack.

In mid-October, a member of the IT team at a US-based Darktrace customer attempted to install the network traffic analysis software, Wireshark, onto their desktop. Due to the customer’s configuration, Darktrace's visibility over this device was limited to its internal traffic, despite this it was still able to identify and alert for a string of suspicious activity conducted by the device.

Initially, Darktrace observed the device making type A DNS requests for 'wiki.wireshark[.]org' immediately before making type A DNS requests for the domain names 'www.googleadservices[.]com', 'allpcsoftware[.]com', and 'wireshhark[.]com' (note the two 'h's). This pattern of activity indicates that the device’s user was redirected to the website, wireshhark[.]com, as a result of the user's interaction with a sponsored Google Search result pointing to allpcsoftware[.]com.

At the time of analysis, navigating to wireshhark[.]com directly from the browser search bar led to a YouTube video of Rick Astley's song "Never Gonna Give You Up". This suggests that the website, wireshhark[.]com, had been configured to redirect users to this video unless they had arrived at the website via the relevant sponsored Google Search result [8].

Although it was not possible to confirm this with certainty, it is highly likely that users who visited the website via the appropriate sponsored Google Search result were led to a fake website (wireshhark[.]com) posing as the legitimate website, wireshark[.]com. It seems that the actors who set up this fake version of wireshark[.]com were inspired by the well-known bait-and-switch technique known as 'rickrolling', where users are presented with a desirable lure (typically a hyperlink of some kind) which unexpectedly leads them to a music video of Rick Astley's "Never Gonna Give You Up".

After being redirected to wireshhark[.]com, the user unintentionally installed a malware sample which dropped what appears to be Cobalt Strike onto their device. The presence of Cobalt Strike on the user's desktop was evidenced by the subsequent type A DNS requests which the device made for the domain name 'pse[.]ac'. These DNS requests were responded to with the likely Cobalt Strike C2 server address, 194.169.175[.]132. Given that Darktrace only had visibility over the device’s internal traffic, it did not observe any C2 connections to this Cobalt Strike endpoint. However, the desktop's subsequent behavior suggests that a malicious actor had gained 'hands-on-keyboard' control of the device via an established C2 channel.

Figure 2: Advanced Search data showing an customer device being tricked into visiting the fake website, wireshhark[.]com.

Since the malicious actor had gained control of an IT member's device, they were able to abuse the privileged account credentials to spread Python payloads across the network via SMB and the Windows Management Instrumentation (WMI) service. The actor was also seen distributing the Windows Sys-Internals tool, PsExec, likely in an attempt to facilitate their lateral movement efforts. It was normal for this IT member's desktop to distribute files across the network via SMB, which meant that this malicious SMB activity was not, at first glance, out of place.

Figure 3: Advanced Search data showing that it was normal for the IT member's device to distribute files over SMB.

However, Darktrace DETECT recognized that the significant spike in file writes being performed here was suspicious, even though, on the surface, it seemed ‘normal’ for the device. Furthermore, Darktrace identified that the executable files being distributed were attempting to masquerade as a different file type, potentially in an attempt to evade the detection of traditional security tools.

Figure 4: Event Log data showing several Model Breaches being created in response to the IT member's DEVICE's SMB writes of Python-based executables.

An addition to DETECT’s identification of this unusual activity, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing compromise and was able to link the SMB writes and the sharing of the executable Python payloads, viewing the connections as one lateral movement incident rather than a string of isolated events. After completing its investigation, Cyber AI Analyst was able to provide a detailed summary of events on one pane of glass, ensuring the customer could identify the affected device and begin their remediation.

Figure 5: Cyber AI Analyst investigation summary highlighting the IT member's desktop’s lateral movement activities.

C2 Activity

The Python payloads distributed by the IT member’s device were likely related to the Nitrogen malware, as evidenced by the payloads’ names and by the network behaviours which they engendered.  

Figure 6: Advanced Search data showing the affected device reaching out to the C2 endpoint, pse[.]ac, and then distributing Python-based executable files to an internal domain controller.

The internal devices to which these Nitrogen payloads were distributed immediately went on to contact C2 infrastructure associated with Cobalt Strike. These C2 connections were made over SSL on ports 443 and 8443.  Darktrace identified the attacker moving laterally to an internal SQL server and an internal domain controller.

Figure 7: Advanced Search data showing an internal SQL server contacting the Cobalt Strike C2 endpoint, 194.180.48[.]169, after receiving Python payloads from the IT member’s device.
Figure 8: Event Log data showing several DETECT model breaches triggering in response to an internal SQL server’s C2 connections to 194.180.48[.]169.

Once more, Cyber AI Analyst launched its own investigation into this activity and was able to successfully identify a series of separate SSL connections, linking them together into one wider C2 incident.

Figure 9: Cyber AI Analyst investigation summary highlighting C2 connections from the SQL server.

Darktrace observed the attacker using their 'hands-on-keyboard' access to these systems to elevate their privileges, conduct network reconnaissance (primarily port scanning), spread Python payloads further across the network, exfiltrate data from the domain controller and transfer a payload from GitHub to the domain controller.

Figure 10: Cyber AI Analyst investigation summary an IP address scan carried out by an internal domain controller.
Figure 12: Event Log data showing an internal domain controller contacting GitHub around the time that it was in communication with the C2 endpoint, 194.180.48[.]169.
Figure 13: Event Log data showing a DETECT model breach being created in response to an internal domain controller's large data upload to the C2 endpoint, 194.180.48[.]169.

After conducting extensive reconnaissance and lateral movement activities, the attacker was observed detonating ransomware with the organization's VMware environment, resulting in the successful encryption of the customer’s VMware vCenter server and VMware virtual machines. In this case, the attacker took around 24 hours to progress from initial access to ransomware detonation.  

If the targeted organization had been signed up for Darktrace's Proactive Threat Notification (PTN) service, they would have been promptly notified of these suspicious activities by the Darktrace Security Operations Center (SOC) in the first instance, allowing them to quickly identify affected devices and quarantine them before the compromise could escalate.

Additionally, given the quantity of high-severe alerts that triggered in response to this attack, Darktrace RESPOND would, under normal circumstances, have inhibited the attacker's activities as soon as they were identified by DETECT. However, due to RESPOND not being configured to act on server devices within the customer’s network, the attacker was able to seamlessly move laterally through the organization's server environment and eventually detonate the ALPHV ransomware.

Nevertheless, Darktrace was able to successfully weave together multiple Cyber AI Analyst incidents which it generated into a thread representing the chain of behavior that made up this attack. The thread of Incident Events created by Cyber AI Analyst provided a substantial account of the attack and the steps involved in it, which significantly facilitated the customer’s post-incident investigation efforts.  

Figure 14: Darktrace's AI Analyst weaved together 33 of the Incident Events it created together into a thread representing the attacker’s chain of behavior.

Conclusion

It is expected for malicious cyber actors to revise and upgrade their methods to evade organizations’ improving security measures. The continued improvement of email security tools, for example, has likely created a need for attackers to develop new means of Initial Access, such as the use of Microsoft Teams-based malware delivery.

This fast-paced ALPHV ransomware attack serves as a further illustration of this trend, with the actor behind the attack using malvertising to convince an unsuspecting user to download the Python-based malware, Nitrogen, from a fake Wireshark site. Unbeknownst to the user, this stealthy malware dropped a C2 implant onto the user’s device, giving the malicious actor the ‘hands-on-keyboard’ access they needed to move laterally, conduct network reconnaissance, and ultimately detonate ALPHV ransomware.

Despite the non-traditional initial access methods used by this ransomware actor, Darktrace DETECT was still able to identify the unusual patterns of network traffic caused by the attacker’s post-compromise activities. The large volume of alerts created by Darktrace DETECT were autonomously investigated by Darktrace’s Cyber AI Analyst, which was able to weave together related activities of different devices into a comprehensive timeline of the attacker’s operation. Given the volume of DETECT alerts created in response to this ALPHV attack, it is expected that Darktrace RESPOND would have autonomously inhibited the attacker’s operation had the capability been appropriately configured.

As the first post-compromise activities Darktrace observed in this ALPHV attack were seemingly performed by a member of the customer’s IT team, it may have looked normal to a human or traditional signature and rules-based security tools. To Darktrace’s Self-Learning AI, however, the observed activities represented subtle deviations from the device’s normal pattern of life. This attack, and Darktrace’s detection of it, is therefore a prime illustration of the value that Self-Learning AI can bring to the task of detecting anomalies within organizations’ digital estates.

Credit to Sam Lister, Senior Cyber Analyst, Emma Foulger, Principal Cyber Analyst

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Appendices

Darktrace DETECT Model Breaches

- Compliance / SMB Drive Write

- Compliance / High Priority Compliance Model Breach

- Anomalous File / Internal / Masqueraded Executable SMB Write

- Device / New or Uncommon WMI Activity

- Anomalous Connection / New or Uncommon Service Control

- Anomalous Connection / High Volume of New or Uncommon Service Control

- Device / New or Uncommon SMB Named Pipe

- Device / Multiple Lateral Movement Model Breaches

- Device / Large Number of Model Breaches  

- SMB Writes of Suspicious Files (Cyber AI Analyst)

- Suspicious Remote WMI Activity (Cyber AI Analyst)

- Suspicious DCE-RPC Activity (Cyber AI Analyst)

- Compromise / Connection to Suspicious SSL Server

- Compromise / High Volume of Connections with Beacon Score

- Anomalous Connection / Suspicious Self-Signed SSL

- Anomalous Connection / Anomalous SSL without SNI to New External

- Compromise / Suspicious TLS Beaconing To Rare External

- Compromise / Beacon to Young Endpoint

- Compromise / SSL or HTTP Beacon

- Compromise / Agent Beacon to New Endpoint

- Device / Long Agent Connection to New Endpoint

- Compromise / SSL Beaconing to Rare Destination

- Compromise / Large Number of Suspicious Successful Connections

- Compromise / Slow Beaconing Activity To External Rare

- Anomalous Server Activity / Outgoing from Server

- Device / Multiple C2 Model Breaches

- Possible SSL Command and Control (Cyber AI Analyst)

- Unusual Repeated Connections (Cyber AI Analyst)

- Device / ICMP Address Scan

- Device / RDP Scan

- Device / Network Scan

- Device / Suspicious Network Scan Activity

- Scanning of Multiple Devices (Cyber AI Analyst)

- ICMP Address Scan (Cyber AI Analyst)

- Device / Anomalous Github Download

- Unusual Activity / Unusual External Data Transfer

- Device / Initial Breach Chain Compromise

MITRE ATT&CK Mapping

Resource Development techniques:

- Acquire Infrastructure: Malvertising (T1583.008)

Initial Access techniques:

- Drive-by Compromise (T1189)

Execution techniques:

- User Execution: Malicious File (T1204.002)

- System Services: Service Execution (T1569.002)

- Windows Management Instrumentation (T1047)

Defence Evasion techniques:

- Masquerading: Match Legitimate Name or Location (T1036.005)

Discovery techniques:

- Remote System Discovery (T1018)

- Network Service Discovery (T1046)

Lateral Movement techniques:

- Remote Services: SMB/Windows Admin Shares

- Lateral Tool Transfer (T1570)

Command and Control techniques:

- Application Layer Protocol: Web Protocols (T1071.001)

- Encrypted Channel: Asymmetric Cryptography (T1573.002)

- Non-Standard Port (T1571)

- Ingress Tool Channel (T1105)

Exfiltration techniques:

- Exfiltration Over C2 Channel (T1041)

Impact techniques:

- Data Encrypted for Impact (T1486)

List of Indicators of Compromise

- allpcsoftware[.]com

- wireshhark[.]com

- pse[.]ac • 194.169.175[.]132

- 194.180.48[.]169

- 193.42.33[.]14

- 141.98.6[.]195

References  

[1] https://darktrace.com/threat-report-2023

[2] https://www.microsoft.com/en-us/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/

[3] https://www.bleepingcomputer.com/news/security/alphv-blackcat-this-years-most-sophisticated-ransomware/

[4] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-353a

[5] https://www.justice.gov/opa/pr/justice-department-disrupts-prolific-alphvblackcat-ransomware-variant

[6] https://www.state.gov/u-s-department-of-state-announces-reward-offers-for-criminal-associates-of-the-alphv-blackcat-ransomware-variant/

[7] https://www.bleepingcomputer.com/news/security/blackcat-alphv-ransomware-linked-to-blackmatter-darkside-gangs/

[8] https://www.trendmicro.com/en_us/research/23/f/malvertising-used-as-entry-vector-for-blackcat-actors-also-lever.html

[9] https://news.sophos.com/en-us/2023/07/26/into-the-tank-with-nitrogen/

[10] https://www.esentire.com/blog/persistent-connection-established-nitrogen-campaign-leverages-dll-side-loading-technique-for-c2-communication

[11] https://www.esentire.com/blog/nitrogen-campaign-2-0-reloads-with-enhanced-capabilities-leading-to-alphv-blackcat-ransomware

[12] https://www.esentire.com/blog/the-notorious-alphv-blackcat-ransomware-gang-is-attacking-corporations-and-public-entities-using-google-ads-laced-with-malware-warns-esentire

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

Network

/

February 3, 2026

Darktrace Malware Analysis: Unpacking SnappyBee

darktace malware analysis snappybeeDefault blog imageDefault blog image

Introduction

The aim of this blog is to be an educational resource, documenting how an analyst can perform malware analysis techniques such as unpacking. This blog will demonstrate the malware analysis process against well-known malware, in this case SnappyBee.

SnappyBee (also known as Deed RAT) is a modular backdoor that has been previously attributed to China-linked cyber espionage group Salt Typhoon, also known as Earth Estries [1] [2]. The malware was first publicly documented by TrendMicro in November 2024 as part of their investigation into long running campaigns targeting various industries and governments by China-linked threat groups.

In these campaigns, SnappyBee is deployed post-compromise, after the attacker has already obtained access to a customer's system, and is used to establish long-term persistence as well as deploying further malware such as Cobalt Strike and the Demodex rootkit.

To decrease the chance of detection, SnappyBee uses a custom packing routine. Packing is a common technique used by malware to obscure its true payload by hiding it and then stealthily loading and executing it at runtime. This hinders analysis and helps the malware evade detection, especially during static analysis by both human analysts and anti-malware services.

This blog is a practical guide on how an analyst can unpack and analyze SnappyBee, while also learning the necessary skills to triage other malware samples from advanced threat groups.

First principles

Packing is not a new technique, and threat actors have generally converged on a standard approach. Packed binaries typically feature two main components: the packed data and an unpacking stub, also called a loader, to unpack and run the data.

Typically, malware developers insert a large blob of unreadable data inside an executable, such as in the .rodata section. This data blob is the true payload of the malware, but it has been put through a process such as encryption, compression, or another form of manipulation to render it unreadable. Sometimes, this data blob is instead shipped in a different file, such as a .dat file, or a fake image. When this happens, the main loader has to read this using a syscall, which can be useful for analysis as syscalls can be easily identified, even in heavily obfuscated binaries.

In the main executable, malware developers will typically include an unpacking stub that takes the data blob, performs one or more operations on it, and then triggers its execution. In most samples, the decoded payload data is loaded into a newly allocated memory region, which will then be marked as executable and executed. In other cases, the decoded data is instead dropped into a new executable on disk and run, but this is less common as it increases the likelihood of detection.

Finding the unpacking routine

The first stage of analysis is uncovering the unpacking routine so it can be reverse engineered. There are several ways to approach this, but it is traditionally first triaged via static analysis on the initial stages available to the analyst.

SnappyBee consists of two components that can be analyzed:

  • A Dynamic-link Library (DLL) that acts as a loader, responsible for unpacking the malicious code
  • A data file shipped alongside the DLL, which contains the encrypted malicious code

Additionally, SnappyBee includes a legitimate signed executable that is vulnerable to DLL side-loading. This means that when the executable is run, it will inadvertently load SnappyBee’s DLL instead of the legitimate one it expects. This allows SnappyBee to appear more legitimate to antivirus solutions.

The first stage of analysis is performing static analysis of the DLL. This can be done by opening the DLL within a disassembler such as IDA Pro. Upon opening the DLL, IDA will display the DllMain function, which is the malware’s initial entry point and the first code executed when the DLL is loaded.

The DllMain function
Figure 1: The DllMain function

First, the function checks if the variable fdwReason is set to 1, and exits if it is not. This variable is set by Windows to indicate why the DLL was loaded. According to Microsoft Developer Network (MSDN), a value of 1 corresponds to DLL_PROCESS_ATTACH, meaning “The DLL is being loaded into the virtual address space of the current process as a result of the process starting up or as a result of a call to LoadLibrary” [3]. Since SnappyBee is known to use DLL sideloading for execution, DLL_PROCESS_ATTACH is the expected value when the legitimate executable loads the malicious DLL.

SnappyBee then uses the GetModule and GetProcAddress to dynamically resolve the address of the VirtualProtect in kernel32 and StartServiceCtrlDispatcherW in advapi32. Resolving these dynamically at runtime prevents them from showing up as a static import for the module, which can help evade detection by anti-malware solutions. Different regions of memory have different permissions to control what they can be used for, with the main ones being read, write, and execute. VirtualProtect is a function that changes the permissions of a given memory region.

SnappyBee then uses VirtualProtect to set the memory region containing the code for the StartServiceCtrlDispatcherW function as writable. It then inserts a jump instruction at the start of this function, redirecting the control flow to one of the SnappyBee DLL’s other functions, and then restores the old permissions.

In practice, this means when the legitimate executable calls StartServiceCtrlDispatcherW, it will immediately hand execution back to SnappyBee. Meanwhile, the call stack now appears more legitimate to outside observers such as antimalware solutions.

The hooked-in function then reads the data file that is shipped with SnappyBee and loads it into a new memory allocation. This pattern of loading the file into memory likely means it is responsible for unpacking the next stage.

The start of the unpacking routine that reads in dbindex.dat.
Figure 2: The start of the unpacking routine that reads in dbindex.dat.

SnappyBee then proceeds to decrypt the memory allocation and execute the code.

The memory decryption routine.
Figure 3: The memory decryption routine.

This section may look complex, however it is fairly straight forward. Firstly, it uses memset to zero out a stack variable, which will be used to store the decryption key. It then uses the first 16 bytes of the data file as a decryption key to initialize the context from.

SnappyBee then calls the mbed_tls_arc4_crypt function, which is a function from the mbedtls library. Documentation for this function can be found online and can be referenced to better understand what each of the arguments mean [4].

The documentation for mbedtls_arc4_crypt.
Figure 4: The documentation for mbedtls_arc4_ crypt.

Comparing the decompilation with the documentation, the arguments SnappyBee passes to the function can be decoded as:

  • The context derived from 16-byte key at the start of the data is passed in as the context in the first parameter
  • The file size minus 16 bytes (to account for the key at the start of the file) is the length of the data to be decrypted
  • A pointer to the file contents in memory, plus 16 bytes to skip the key, is used as the input
  • A pointer to a new memory allocation obtained from VirtualAlloc is used as the output

So, putting it all together, it can be concluded that SnappyBee uses the first 16 bytes as the key to decrypt the data that follows , writing the output into the allocated memory region.

SnappyBee then calls VirtualProtect to set the decrypted memory region as Read + Execute, and subsequently executes the code at the memory pointer. This is clearly where the unpacked code containing the next stage will be placed.

Unpacking the malware

Understanding how the unpacking routine works is the first step. The next step is obtaining the actual code, which cannot be achieved through static analysis alone.

There are two viable methods to retrieve the next stage. The first method is implementing the unpacking routine from scratch in a language like Python and running it against the data file.

This is straightforward in this case, as the unpacking routine in relatively simple and would not require much effort to re-implement. However, many unpacking routines are far more complex, which leads to the second method: allowing the malware to unpack itself by debugging it and then capturing the result. This is the approach many analysts take to unpacking, and the following will document this method to unpack SnappyBee.

As SnappyBee is 32-bit Windows malware, debugging can be performed using x86dbg in a Windows sandbox environment to debug SnappyBee. It is essential this sandbox is configured correctly, because any mistake during debugging could result in executing malicious code, which could have serious consequences.

Before debugging, it is necessary to disable the DYNAMIC_BASE flag on the DLL using a tool such as setdllcharacteristics. This will stop ASLR from randomizing the memory addresses each time the malware runs and ensures that it matches the addresses observed during static analysis.

The first place to set a breakpoint is DllMain, as this is the start of the malicious code and the logical place to pause before proceeding. Using IDA, the functions address can be determined; in this case, it is at offset 10002DB0. This can be used in the Goto (CTRL+G) dialog to jump to the offset and place a breakpoint. Note that the “Run to user code” button may need to be pressed if the DLL has not yet been loaded by x32dbg, as it spawns a small process to load the DLL as DLLs cannot be executed directly.

The program can then run until the breakpoint, at which point the program will pause and code recognizable from static analysis can be observed.

Figure 5: The x32dbg dissassembly listing forDllMain.

In the previous section, this function was noted as responsible for setting up a hook, and in the disassembly listing the hook address can be seen being loaded at offset 10002E1C. It is not necessary to go through the whole hooking process, because only the function that gets hooked in needs to be run. This function will not be naturally invoked as the DLL is being loaded directly rather than via sideloading as it expects. To work around this, the Extended Instruction Pointer (EIP) register can be manipulated to point to the start of the hook function instead, which will cause it to run instead of the DllMain function.

To update EIP, the CRTL+G dialog can again be used to jump to the hook function address (10002B50), and then the EIP register can be set to this address by right clicking the first instruction and selecting “Set EIP here”. This will make the hook function code run next.

Figure 6: The start of the hookedin-in function

Once in this function, there are a few addresses where breakpoints should be set in order to inspect the state of the program at critical points in the unpacking process. These are:

-              10002C93, which allocates the memory for the data file and final code

-              10002D2D, which decrypts the memory

-              10002D81, which runs the unpacked code

Setting these can be done by pressing the dot next to the instruction listing, or via the CTRL+G Goto menu.

At the first breakpoint, the call to VirtualAlloc will be executed. The function returns the memory address of the created memory region, which is stored in the EAX register. In this case, the region was allocated at address 00700000.

Figure 7: The result of the VirtualAlloc call.

It is possible to right click the address and press “Follow in dump” to pin the contents of the memory to the lower pane, which makes it easy to monitor the region as the unpacking process continues.

Figure 8: The allocated memory region shown in x32dbg’s dump.

Single-stepping through the application from this point eventually reaches the call to ReadFile, which loads the file into the memory region.

Figure 9: The allocated memory region after the file is read into it, showing high entropy data.

The program can then be allowed to run until the next breakpoint, which after single-stepping will execute the call to mbedtls_arc4_crypt to decrypt the memory. At this point, the data in the dump will have changed.

Figure 10: The same memory region after the decryption is run, showing lower entropy data.

Right-clicking in the dump and selecting "Disassembly” will disassemble the data. This yields valid shell code, indicating that the unpacking succeeded, whereas corrupt or random data would be expected if the unpacking had failed.

Figure 11: The disassembly view of the allocated memory.

Right-clicking and selecting “Follow in memory map” will show the memory allocation under the memory map view. Right-clicking this then provides an option to dump the entire memory block to file.

Figure 12: Saving the allocated memory region.

This dump can then be opened in IDA, enabling further static analysis of the shellcode. Reviewing the shellcode, it becomes clear that it performs another layer of unpacking.

As the debugger is already running, the sample can be allowed to execute up to the final breakpoint that was set on the call to the unpacked shellcode. Stepping into this call will then allow debugging of the new shellcode.

The simplest way to proceed is to single-step through the code, pausing on each call instruction to consider its purpose. Eventually, a call instruction that points to one of the memory regions that were assigned will be reached, which will contain the next layer of unpacked code. Using the same disassembly technique as before, it can be confirmed that this is more unpacked shellcode.

Figure 13: The unpacked shellcode’s call to RDI, which points to more unpacked shellcode. Note this screenshot depicts the 64-bit variant of SnappyBee instead of 32-bit, however the theory is the same.

Once again, this can be dumped out and analyzed further in IDA. In this case, it is the final payload used by the SnappyBee malware.

Conclusion

Unpacking remains one of the most common anti-analysis techniques and is a feature of most sophisticated malware from threat groups. This technique of in-memory decryption reduces the forensic “surface area” of the malware, helping it to evade detection from anti-malware solutions. This blog walks through one such example and provides practical knowledge on how to unpack malware for deeper analysis.

In addition, this blog has detailed several other techniques used by threat actors to evade analysis, such as DLL sideloading to execute code without arising suspicion, dynamic API resolving to bypass static heuristics, and multiple nested stages to make analysis challenging.

Malware such as SnappyBee demonstrates a continued shift towards highly modular and low-friction malware toolkits that can be reused across many intrusions and campaigns. It remains vital for security teams  to maintain the ability to combat the techniques seen in these toolkits when responding to infections.

While the technical details of these techniques are primarily important to analysts, the outcomes of this work directly affect how a Security Operations Centre (SOC) operates at scale. Without the technical capability to reliably unpack and observe these samples, organizations are forced to respond without the full picture.

The techniques demonstrated here help close that gap. This enables security teams to reduce dwell time by understanding the exact mechanisms of a sample earlier, improve detection quality with behavior-based indicators rather than relying on hash-based detections, and increase confidence in response decisions when determining impact.

Credit to Nathaniel Bill (Malware Research Engineer)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

SnappyBee Loader 1 - 25b9fdef3061c7dfea744830774ca0e289dba7c14be85f0d4695d382763b409b

SnappyBee Loader 2 - b2b617e62353a672626c13cc7ad81b27f23f91282aad7a3a0db471d84852a9ac          

SnappyBee Payload - 1a38303fb392ccc5a88d236b4f97ed404a89c1617f34b96ed826e7bb7257e296

References

[1] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[2] https://www.darktrace.com/blog/salty-much-darktraces-view-on-a-recent-salt-typhoon-intrusion

[3] https://learn.microsoft.com/en-us/windows/win32/dlls/dllmain#parameters

[4] https://mbed-tls.readthedocs.io/projects/api/en/v2.28.4/api/file/arc4_8h/#_CPPv418mbedtls_arc4_cryptP20mbedtls_arc4_context6size_tPKhPh

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

AI

/

February 4, 2026

The State of AI Cybersecurity 2026: Unveiling insights from over 1,500 security leaders

The State of AI Cybersecurity 2026Default blog imageDefault blog image

2025 was the year enterprise AI went mainstream. In 2026, it’s made its way into every facet of the organizational structure – transforming workflows, revolutionizing productivity, and creating new value streams. In short, it’s opened up a whole new attack surface.  

At the same time, AI has accelerated the pace of cybersecurity arms race on both sides: adversaries are innovating using the latest AI technologies at their disposal while defenders scramble to outmaneuver them and stay ahead of AI-powered threats.  

That’s why Darktrace publishes this research every year. The State of AI Cybersecurity 2026 provides an annual snapshot of how the AI threat landscape is shifting, where organizations are adopting AI to maximum advantage, and how they are securing AI in the enterprise.

What is the State of AI Cybersecurity 2026?

We surveyed over 1,500 CISOs, IT leaders, administrators, and practitioners from a range of industries and different countries to uncover their attitudes, understanding, and priorities when it comes to AI threats, agents, tools, and operations in 2026. ​

The results show a fast-changing picture, as security leaders race to navigate the challenges and opportunities at play. Since last year, there has been enormous progress towards maturity in areas like AI literacy and confidence in AI-powered defense, while issues around AI governance remain inconclusive.

Let’s look at some of the key findings for 2026.

What’s the impact of AI on the attack surface?

Security leaders are seeing the adoption of AI agents across the workforce, and are increasingly concerned about the security implications.

  • 44% are extremely or very concerned with the security implications of third-party LLMs (like Copilot or ChatGPT)
  • 92% are concerned about the use of AI agents across the workforce and their impact on security

The rapid expansion of generative AI across the enterprise is outpacing the security frameworks designed to govern it. AI systems behave in ways that traditional defenses are not designed to monitor, introducing new risks around data exposure, unauthorized actions, and opaque decision-making as employees embed generative AI and autonomous agents into everyday workflows.  

Their top concerns? Sensitive data exposure ranks top (61%), while regulatory compliance violations are a close second (56%). These risks tend to have the fastest and most material fallout – ranging from fines to reputational harm – and are more likely to materialize in environments where AI governance is still evolving.

What’s the impact of AI on the cyber threat landscape?

AI is now being used to expedite every stage of the attack kill chain – from initial intrusion to privilege escalation and data exfiltration. 

“73% say that AI-powered threats are already having a significant impact on their organization.”

With AI, attackers can launch novel attacks at scale, and this is significantly increasing the number of threats requiring attention by the security team – often to the point of overwhelm.  

Traditional security solutions relying on historical attack data were never designed to handle an environment where attacks continuously evolve, multiply, and optimize at machine speed, so it’s no surprise that 92% agree that AI-powered cyber-threats are forcing them to significantly upgrade their defenses.

How is AI reshaping cybersecurity operations?

Cybersecurity workflows are still in flux as security leaders get used to the integration of AI agents into everyday operations.  

“Generative AI is now playing a role in 77% of security stacks.” But only 35% are using unsupervised machine learning.

AI technologies are diverse, ranging from LLMs to NLP systems, GANs, and unsupervised machine learning, with each type offering specific capabilities and facing particular limitations. The lack of familiarity with the different types of AI used within the security stack may be holding some practitioners back from using these new technologies to their best advantage.  

It also creates a lack of trust between humans and AI systems: only 14% of security professionals allow AI to take independent remediation actions in the SOC with no human in the loop.

Another new trend for this year is a strong preference (85%) for relying on Managed Security Service Providers (MSSPs) for SOC services instead of in-house teams, as organizations aim to secure expert, always-on support without the cost and operational burden of running an internal operation.

What impact is AI having on cybersecurity tools?

“96% of cybersecurity professionals agree that AI can significantly improve the speed and efficiency with which they work.”

The capacity of AI for augmenting security efforts is undisputed. But as vendor AI claims become far-reaching, it falls to security leaders to clarify which AI tools offer true value and can help solve their specific security challenges.  

Security professionals are aligned on the biggest area of impact: 72% agree that AI excels at detecting anomalies thanks to its advanced pattern recognition. This enables it to identify unusual behavior that may signal a threat, even when the specific attack has never been encountered or recorded in existing datasets.  

“When purchasing new security capabilities, 93% prefer ones that are part of a broader platform over individual point products.”

Like last year, the drive towards platform consolidation remains strong. Fewer vendors can mean tighter integrations, less console switching, streamlined management, and stronger cross-domain threat insights. The challenge is finding vendors that perform well across the board.

See the full report for more statistics and insights into how security leaders are responding to the AI landscape in 2026.

Learn more about securing AI in your enterprise.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI