Blog
/
Email
/
July 11, 2023

Detecting and Responding to Vendor Email Compromises (VEC)

Learn how Darktrace detected and responded to a March 2023 Vendor Email Compromise (VEC) attacks on customer in the energy industry. Read more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2023

Threat Trends: Email Landscape

As organizations and security teams around the world continue to improve their cyber hygiene and strengthen the defenses of their digital environments, threat actors are being forced to adapt and employ more advanced, sophisticated attack methods to achieve their goals.

Vendor Email Compromise (VEC) is one such elaborate and sophisticated type of Business Email Compromise (BEC) attack which exploits pre-existing trusted business relationships to impersonate vendors, with the goal of launching a targeted attack on the vendor’s customers [1].  

In March 2023, Darktrace/Email™ detected an example of a VEC attack on the network of a customer in the energy sector. Darktrace’s Self-Learning AI worked to successfully neutralize the VEC attack before it was able to take hold, by blocking the malicious emails so that they did not reach the inboxes of the intended recipients.

Business Email Compromise (BEC)

BEC is the practice of using deceitful emails to trick an organization into transferring funds or divulging sensitive information to a malicious actor. BEC attacks can have devastating financial consequences for organizations, with the FBI reporting a total of USD 2.7 billion in losses from BEC attacks in 2022 [2].  Along with ransomware attacks, BEC attacks are one of the greatest cyber threats facing organizations.

Vendor Email Compromise (VEC)

VEC represents a “new milestone in the evolution of BEC attacks” having taken BEC attacks “to a whole new level of sophistication” [3]. Traditional BEC attacks involve the impersonation of an upper or middle-management employee by a cybercriminal, who attempts to trick a senior executive or employee with access to the company’s finances into transferring funds [4]. Thus, they are crafted to target a specific individual within an organization.

On the other hand, VEC attack campaigns take this attack style even further as they tend to require a greater understanding of existing vendor-customer business relationships. A cyber-criminal gains access to a legitimate vendor account, the process of which may take months to design and fully implement, and uses the account to spread malicious emails to the vendor’s customers. VEC attacks are complex and difficult to detect, however they share some common features [1,3]:

1. Reconnaissance on the vendor and their customer base – the threat actor conducts in-depth research in an attempt to be as convincing as possible in their impersonation efforts. This process may take weeks or months to complete.

2. Credential stealing through phishing campaigns – the threat actor tricks the vendor’s employees into revealing confidential data or corporate credentials in order to gain access to one of the email accounts belonging to the vendor.

3. Account takeover - once the attacker has gained access to one of the vendor’s email accounts, they will create mailbox rules which forward emails meeting certain conditions (such as having ‘Invoice’ in their subject line) to the threat actor’s inbox. This is typically a lengthy process and requires the malicious actors to harvest as much sensitive information as they need in order to successfully masquerade as vendor employees.

4. Deceitful emails are sent to the vendor’s customers – the attacker crafts and sends a highly sophisticated and difficult to detect email campaign to targeted individuals amongst the vendor’s customers. These emails, which may be embedded into existing email threads, will typically contain instructions on how to wire money to the bank account of an attacker.

There have been many high-profile cases of BEC attacks over the years, one of the most famous being the vendor-impersonating BEC attacks carried out between 2013 and 2015 [5]. This BEC campaign resulted in victim companies transferring a total of USD 120 million to bank accounts under the attacker’s control. As the threat of BEC, and in particular VEC, attacks continue to rise, so too does the importance of being able to detect and respond to them.

Observed VEC Attack  

In March 2023, Darktrace/Email observed a VEC attack on an energy company. Email communication between this customer and one of their third-party vendors was common and took place as part of expected business activity, earning previous emails tags such as “Known Domain Relationship”, “Known Correspondent”, and “Established Domain Relationship”. These tags identify the sender relationship as trusted, causing Darktrace’s AI to typically attribute an anomaly score of 0% to emails from this third-party sender.

Just fifty minutes after the above legitimate email was observed, a group of suspicious emails were sent from the same domain, indicating that the trusted third-party had been compromised. Darktrace’s AI picked up on the peculiarity of these emails straight away, detecting elements of the mails which were out of character compared to the sender’s usual pattern of life, and as a result attributing these emails a 100% anomaly score despite the trusted relationship between the customer and sender domain. These suspicious emails were part of a targeted phishing attack, sent to high value individuals such as the company’s CTO and various company directors.  

Figure 1: Darktrace/Email's interface highlighting tags indicating the trusted relationship between the third-party domain and the customer.

Using methods outside of Darktrace’s visibility, a malicious actor managed to hijack the corporate account of a senior employee of this vendor company. The actor abused this email account to send deceitful emails to multiple employees at the energy company, including senior executives.

Figure 2: This screenshot shows Darktrace/Email’s assessment of emails from the vendor account pre-compromise and post-compromise.

Each of the emails sent by the attacker contained a link to a malicious file hosted inside a SharePoint repository associated with a university that had no association with the energy company. The malicious actor therefore appears to have leveraged a previously hijacked SharePoint repository to host their payload.

Cyber-criminals frequently use legitimate file storage domains to host malicious payloads as traditional gateways often fail to defend against them using reputation checks. The SharePoint file which the attacker sought to distribute to employees of the energy company likely provided wire transfer or bank account update instructions. If the attacker had succeeded in delivering these emails to these employees’ mailboxes, then the employees may have been tricked into performing actions resulting in the transfer of funds to a malicious actor. However, the attacker’s attempts to deliver these emails were thwarted by Darktrace/Email.

Darktrace Coverage

Despite the malicious actor sending their deceitful emails from a trusted vendor account, a range of anomalies were detected by Darktrace’s AI, causing the malicious emails to be given a 100% anomaly score and thus held from their recipients’ mailboxes. Such abnormalities, which represented a deviation in normal behavior, included:

  • The presence of an unexpected, out of character file storage link (known to be used for hosting malicious content)
  • The geographical source of the email
  • The anomalous linguistic structure and content of the email body, which earned the emails a high inducement score
Figure 3: Darktrace/Email’s overview of one of the malicious VEC emails it observed.

Darktrace has a series of models designed to trigger when anomalous features, such as those described above, are detected. The emails which made up this particular VEC attack breached a number of notable Darktrace/Email models. The presence of the suspicious link in the emails caused multiple link-related models to breach, which in turn elicited Darktrace RESPOND™ to perform its ‘double lock link’ action – an action which ensures that a user who has clicked on it cannot follow it to its original source. Models which breached due to the suspicious SharePoint link include:

Link / Link To File Storage

  • Link / Low Link Association
  • Link / New Unknown Link
  • Link / Outlook Hijack
  • Link / Relative Sender Anomaly + New Unknown Link
  • Link / Unknown Storage Service
  • Link / Visually Prominent Link Unexpected for Sender
  • Unusual / Unusual Login Location + Unknown Link

The out-of-character and suspicious linguistic aspects of the emails caused the following Darktrace/Email models to breach:

  • High Anomaly Sender
  • Proximity / Phishing
  • Proximity / Phishing and New Activity
  • Unusual / Inducement Shift High
  • Unusual / Undisclosed Recipients
  • Unusual / Unusual Login Location
  • Unusual / Off Topic

Due to the combination of suspicious features that were detected, tags such as ‘Phishing Link’ and ‘Out of Character’ were also added to these emails by Darktrace/Email. Darktrace’s coverage of these emails’ anomalous features ultimately led Darktrace RESPOND to perform its most severe inhibitive action, ‘hold message’. Applying this action stopped the emails from entering their recipients’ mailboxes. By detecting deviations from the sender’s normal email behavior, Darktrace/Email was able to completely neutralize the emails, and prevent them from potentially leading to significant financial harm.

Conclusion

Despite bypassing the customer’s other security measures, Darktrace/Email successfully identified and held these malicious emails, blocking them from reaching the inboxes of the intended recipients and thus preventing a successful targeted VEC attack. The elaborate and sophisticated nature of VEC attacks makes them particularly perilous to customers, and they can be hard to detect due to their exploitation of trusted relationships, and in this case, their use of legitimate services to host malicious files.

Darktrace’s anomaly-based approach to threat detection means it is uniquely placed to identify deviations in common email behavior, while its autonomous response capabilities allow it to take preventative action against emerging threats without latency.

Credits to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

MITRE ATT&CK Mapping

Tactic - Techniques

Resource Development

  • T1586.002 – Compromise Accounts: Email Accounts
  • T1584.006 – Compromise Infrastructure: Web Services
  • T1608.005 – Stage Capabilities: Link Target

Initial Access

  • T1195 – Supply Chain Compromise
  • T1566.002 – Phishing : Spearphishing Link

References

[1] https://www.cloudflare.com/en-gb/learning/email-security/what-is-vendor-email-compromise/

[2] https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] https://heimdalsecurity.com/blog/vendor-email-compromise-vec/

[4] https://www.ncsc.gov.uk/files/Business-email-compromise-infographic.pdf  

[5] https://www.justice.gov/usao-sdny/pr/lithuanian-man-sentenced-5-years-prison-theft-over-120-million-fraudulent-business

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

OT

/

September 4, 2025

Rethinking Signature-Based Detection for Power Utility Cybersecurity

power utility cybersecurityDefault blog imageDefault blog image

Lessons learned from OT cyber attacks

Over the past decade, some of the most disruptive attacks on power utilities have shown the limits of signature-based detection and reshaped how defenders think about OT security. Each incident reinforced that signatures are too narrow and reactive to serve as the foundation of defense.

2015: BlackEnergy 3 in Ukraine

According to CISA, on December 23, 2015, Ukrainian power companies experienced unscheduled power outages affecting a large number of customers — public reports indicate that the BlackEnergy malware was discovered on the companies’ computer networks.

2016: Industroyer/CrashOverride

CISA describes CrashOverride malwareas an “extensible platform” reported to have been used against critical infrastructure in Ukraine in 2016. It was capable of targeting industrial control systems using protocols such as IEC‑101, IEC‑104, and IEC‑61850, and fundamentally abused legitimate control system functionality to deliver destructive effects. CISA emphasizes that “traditional methods of detection may not be sufficient to detect infections prior to the malware execution” and recommends behavioral analysis techniques to identify precursor activity to CrashOverride.

2017: TRITON Malware

The U.S. Department of the Treasury reports that the Triton malware, also known as TRISIS or HatMan, was “designed specifically to target and manipulate industrial safety systems” in a petrochemical facility in the Middle East. The malware was engineered to control Safety Instrumented System (SIS) controllers responsible for emergency shutdown procedures. During the attack, several SIS controllers entered a failed‑safe state, which prevented the malware from fully executing.

The broader lessons

These events revealed three enduring truths:

  • Signatures have diminishing returns: BlackEnergy showed that while signatures can eventually identify adapted IT malware, they arrive too late to prevent OT disruption.
  • Behavioral monitoring is essential: CrashOverride demonstrated that adversaries abuse legitimate industrial protocols, making behavioral and anomaly detection more effective than traditional signature methods.
  • Critical safety systems are now targets: TRITON revealed that attackers are willing to compromise safety instrumented systems, elevating risks from operational disruption to potential physical harm.

The natural progression for utilities is clear. Static, file-based defenses are too fragile for the realities of OT.  

These incidents showed that behavioral analytics and anomaly detection are far more effective at identifying suspicious activity across industrial systems, regardless of whether the malicious code has ever been seen before.

Strategic risks of overreliance on signatures

  • False sense of security: Believing signatures will block advanced threats can delay investment in more effective detection methods.
  • Resource drain: Constantly updating, tuning, and maintaining signature libraries consumes valuable staff resources without proportional benefit.
  • Adversary advantage: Nation-state and advanced actors understand the reactive nature of signature defenses and design attacks to circumvent them from the start.

Recommended Alternatives (with real-world OT examples)

 Alternative strategies for detecting cyber attacks in OT
Figure 1: Alternative strategies for detecting cyber attacks in OT

Behavioral and anomaly detection

Rather than relying on signatures, focusing on behavior enables detection of threats that have never been seen before—even trusted-looking devices.

Real-world insight:

In one OT setting, a vendor inadvertently left a Raspberry Pi on a customer’s ICS network. After deployment, Darktrace’s system flagged elastic anomalies in its HTTPS and DNS communication despite the absence of any known indicators of compromise. The alerting included sustained SSL increases, agent‑beacon activity, and DNS connections to unusual endpoints, revealing a possible supply‑chain or insider risk invisible to static tools.  

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Threat intelligence sharing & building toward zero-trust philosophy

Frameworks such as MITRE ATT&CK for ICS provide a common language to map activity against known adversary tactics, helping teams prioritize detections and response strategies. Similarly, information-sharing communities like E-ISAC and regional ISACs give utilities visibility into the latest tactics, techniques, and procedures (TTPs) observed across the sector. This level of intel can help shift the focus away from chasing individual signatures and toward building resilience against how adversaries actually operate.

Real-world insight:

Darktrace’s AI embodies zero‑trust by assuming breach potential and continually evaluating all device behavior, even those deemed trusted. This approach allowed the detection of an anomalous SharePoint phishing attempt coming from a trusted supplier, intercepted by spotting subtle patterns rather than predefined rules. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on critical-national infrastructure.

This reinforces the need to monitor behavioral deviations across the supply chain, not just known bad artifacts.

Defense-in-Depth with OT context & unified visibility

OT environments demand visibility that spans IT, OT, and IoT layers, supported by risk-based prioritization.

Real-world insight:

Darktrace / OT offers unified AI‑led investigations that break down silos between IT and OT. Smaller teams can see unusual outbound traffic or beaconing from unknown OT devices, swiftly investigate across domains, and get clear visibility into device behavior, even when they lack specialized OT security expertise.  

Moreover, by integrating contextual risk scoring, considering real-world exploitability, device criticality, firewall misconfiguration, and legacy hardware exposure, utilities can focus on the vulnerabilities that genuinely threaten uptime and safety, rather than being overwhelmed by CVE noise.  

Regulatory alignment and positive direction

Industry regulations are beginning to reflect this evolution in strategy. NERC CIP-015 requires internal network monitoring that detects anomalies, and the standard references anomalies 15 times. In contrast, signature-based detection is not mentioned once.

This regulatory direction shows that compliance bodies understand the limitations of static defenses and are encouraging utilities to invest in anomaly-based monitoring and analytics. Utilities that adopt these approaches will not only be strengthening their resilience but also positioning themselves for regulatory compliance and operational success.

Conclusion

Signature-based detection retains utility for common IT malware, but it cannot serve as the backbone of security for power utilities. History has shown that major OT attacks are rarely stopped by signatures, since each campaign targets specific systems with customized tools. The most dangerous adversaries, from insiders to nation-states, actively design their operations to avoid detection by signature-based tools.

A more effective strategy prioritizes behavioral analytics, anomaly detection, and community-driven intelligence sharing. These approaches not only catch known threats, but also uncover the subtle anomalies and novel attack techniques that characterize tomorrow’s incidents.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

/

Identity

/

August 21, 2025

From VPS to Phishing: How Darktrace Uncovered SaaS Hijacks through Virtual Infrastructure Abuse

VPS phishingDefault blog imageDefault blog image

What is a VPS and how are they abused?

A Virtual Private Server (VPS) is a virtualized server that provides dedicated resources and control to users on a shared physical device.  VPS providers, long used by developers and businesses, are increasingly misused by threat actors to launch stealthy, scalable attacks. While not a novel tactic, VPS abuse is has seen an increase in Software-as-a-Service (SaaS)-targeted campaigns as it enables attackers to bypass geolocation-based defenses by mimicking local traffic, evade IP reputation checks with clean, newly provisioned infrastructure, and blend into legitimate behavior [3].

VPS providers like Hyonix and Host Universal offer rapid setup and minimal open-source intelligence (OSINT) footprint, making detection difficult [1][2]. These services are not only fast to deploy but also affordable, making them attractive to attackers seeking anonymous, low-cost infrastructure for scalable campaigns. Such attacks tend to be targeted and persistent, often timed to coincide with legitimate user activity, a tactic that renders traditional security tools largely ineffective.

Darktrace’s investigation into Hyonix VPS abuse

In May 2025, Darktrace’s Threat Research team investigated a series of incidents across its customer base involving VPS-associated infrastructure. The investigation began with a fleet-wide review of alerts linked to Hyonix (ASN AS931), revealing a noticeable spike in anomalous behavior from this ASN in March 2025. The alerts included brute-force attempts, anomalous logins, and phishing campaign-related inbox rule creation.

Darktrace identified suspicious activity across multiple customer environments around this time, but two networks stood out. In one instance, two internal devices exhibited mirrored patterns of compromise, including logins from rare endpoints, manipulation of inbox rules, and the deletion of emails likely used in phishing attacks. Darktrace traced the activity back to IP addresses associated with Hyonix, suggesting a deliberate use of VPS infrastructure to facilitate the attack.

On the second customer network, the attack was marked by coordinated logins from rare IPs linked to multiple VPS providers, including Hyonix. This was followed by the creation of inbox rules with obfuscated names and attempts to modify account recovery settings, indicating a broader campaign that leveraged shared infrastructure and techniques.

Darktrace’s Autonomous Response capability was not enabled in either customer environment during these attacks. As a result, no automated containment actions were triggered, allowing the attack to escalate without interruption. Had Autonomous Response been active, Darktrace would have automatically blocked connections from the unusual VPS endpoints upon detection, effectively halting the compromise in its early stages.

Case 1

Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.
Figure 1: Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.

Initial Intrusion

On May 19, 2025, Darktrace observed two internal devices on one customer environment initiating logins from rare external IPs associated with VPS providers, namely Hyonix and Host Universal (via Proton VPN). Darktrace recognized that these logins had occurred within minutes of legitimate user activity from distant geolocations, indicating improbable travel and reinforcing the likelihood of session hijacking. This triggered Darktrace / IDENTITY model “Login From Rare Endpoint While User Is Active”, which highlights potential credential misuse when simultaneous logins occur from both familiar and rare sources.  

Shortly after these logins, Darktrace observed the threat actor deleting emails referring to invoice documents from the user’s “Sent Items” folder, suggesting an attempt to hide phishing emails that had been sent from the now-compromised account. Though not directly observed, initial access in this case was likely achieved through a similar phishing or account hijacking method.

 Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.
Figure 2: Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.

Case 2

Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.
Figure 3: Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.

In the second customer environment, Darktrace observed similar login activity originating from Hyonix, as well as other VPS providers like Mevspace and Hivelocity. Multiple users logged in from rare endpoints, with Multi-Factor Authentication (MFA) satisfied via token claims, further indicating session hijacking.

Establishing control and maintaining persistence

Following the initial access, Darktrace observed a series of suspicious SaaS activities, including the creation of new email rules. These rules were given minimal or obfuscated names, a tactic often used by attackers to avoid drawing attention during casual mailbox reviews by the SaaS account owner or automated audits. By keeping rule names vague or generic, attackers reduce the likelihood of detection while quietly redirecting or deleting incoming emails to maintain access and conceal their activity.

One of the newly created inbox rules targeted emails with subject lines referencing a document shared by a VIP at the customer’s organization. These emails would be automatically deleted, suggesting an attempt to conceal malicious mailbox activity from legitimate users.

Mirrored activity across environments

While no direct lateral movement was observed, mirrored activity across multiple user devices suggested a coordinated campaign. Notably, three users had near identical similar inbox rules created, while another user had a different rule related to fake invoices, reinforcing the likelihood of a shared infrastructure and technique set.

Privilege escalation and broader impact

On one account, Darktrace observed “User registered security info” activity was shortly after anomalous logins, indicating attempts to modify account recovery settings. On another, the user reset passwords or updated security information from rare external IPs. In both cases, the attacker’s actions—including creating inbox rules, deleting emails, and maintaining login persistence—suggested an intent to remain undetected while potentially setting the stage for data exfiltration or spam distribution.

On a separate account, outbound spam was observed, featuring generic finance-related subject lines such as 'INV#. EMITTANCE-1'. At the network level, Darktrace / NETWORK detected DNS requests from a device to a suspicious domain, which began prior the observed email compromise. The domain showed signs of domain fluxing, a tactic involving frequent changes in IP resolution, commonly used by threat actors to maintain resilient infrastructure and evade static blocklists. Around the same time, Darktrace detected another device writing a file named 'SplashtopStreamer.exe', associated with the remote access tool Splashtop, to a domain controller. While typically used in IT support scenarios, its presence here may suggest that the attacker leveraged it to establish persistent remote access or facilitate lateral movement within the customer’s network.

Conclusion

This investigation highlights the growing abuse of VPS infrastructure in SaaS compromise campaigns. Threat actors are increasingly leveraging these affordable and anonymous hosting services to hijack accounts, launch phishing attacks, and manipulate mailbox configurations, often bypassing traditional security controls.

Despite the stealthy nature of this campaign, Darktrace detected the malicious activity early in the kill chain through its Self-Learning AI. By continuously learning what is normal for each user and device, Darktrace surfaced subtle anomalies, such as rare login sources, inbox rule manipulation, and concurrent session activity, that likely evade traditional static, rule-based systems.

As attackers continue to exploit trusted infrastructure and mimic legitimate user behavior, organizations should adopt behavioral-based detection and response strategies. Proactively monitoring for indicators such as improbable travel, unusual login sources, and mailbox rule changes, and responding swiftly with autonomous actions, is critical to staying ahead of evolving threats.

Credit to Rajendra Rushanth (Cyber Analyst), Jen Beckett (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

·      1: https://cybersecuritynews.com/threat-actors-leveraging-vps-hosting-providers/

·      2: https://threatfox.abuse.ch/asn/931/

·      3: https://www.cyfirma.com/research/vps-exploitation-by-threat-actors/

Appendices

Darktrace Model Detections

•   SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

•   SaaS / Compromise / Suspicious Login and Mass Email Deletes

•   SaaS / Resource / Mass Email Deletes from Rare Location

•   SaaS / Compromise / Unusual Login and New Email Rule

•   SaaS / Compliance / Anomalous New Email Rule

•   SaaS / Resource / Possible Email Spam Activity

•   SaaS / Unusual Activity / Multiple Unusual SaaS Activities

•   SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

•   SaaS / Access / Unusual External Source for SaaS Credential Use

•   SaaS / Compromise / High Priority Login From Rare Endpoint

•   SaaS / Compromise / Login From Rare Endpoint While User Is Active

List of Indicators of Compromise (IoCs)

Format: IoC – Type – Description

•   38.240.42[.]160 – IP – Associated with Hyonix ASN (AS931)

•   103.75.11[.]134 – IP – Associated with Host Universal / Proton VPN

•   162.241.121[.]156 – IP – Rare IP associated with phishing

•   194.49.68[.]244 – IP – Associated with Hyonix ASN

•   193.32.248[.]242 – IP – Used in suspicious login activity / Mullvad VPN

•   50.229.155[.]2 – IP – Rare login IP / AS 7922 ( COMCAST-7922 )

•   104.168.194[.]248 – IP – Rare login IP / AS 54290 ( HOSTWINDS )

•   38.255.57[.]212 – IP – Hyonix IP used during MFA activity

•   103.131.131[.]44 – IP – Hyonix IP used in login and MFA activity

•   178.173.244[.]27 – IP – Hyonix IP

•   91.223.3[.]147 – IP – Mevspace Poland, used in multiple logins

•   2a02:748:4000:18:0:1:170b[:]2524 – IPv6 – Hivelocity VPS, used in multiple logins and MFA activity

•   51.36.233[.]224 – IP – Saudi ASN, used in suspicious login

•   103.211.53[.]84 – IP – Excitel Broadband India, used in security info update

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

•   Initial Access – T1566 – Phishing

                       T1566.001 – Spearphishing Attachment

•   Execution – T1078 – Valid Accounts

•   Persistence – T1098 – Account Manipulation

                       T1098.002 – Exchange Email Rules

•   Command and Control – T1071 – Application Layer Protocol

                       T1071.001 – Web Protocols

•   Defense Evasion – T1036 – Masquerading

•   Defense Evasion – T1562 – Impair Defenses

                       T1562.001 – Disable or Modify Tools

•   Credential Access – T1556 – Modify Authentication Process

                       T1556.004 – MFA Bypass

•   Discovery – T1087 – Account Discovery

•      Impact – T1531 – Account Access Removal

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI