Blog
/
Network
/
May 25, 2022

Uncovering the Sysrv-Hello Crypto-Jacking Bonet

Discover the cyber kill chain of a Sysrv-hello botnet infection in France and gain insights into the latest TTPs of the botnet in March and April 2022.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Shuh Chin Goh
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2022

In recent years, the prevalence of crypto-jacking botnets has risen in tandem with the popularity and value of cryptocurrencies. Increasingly crypto-mining malware programs are distributed by botnets as they allow threat actors to harness the cumulative processing power of a large number of machines (discussed in our other Darktrace blogs.1 2 One of these botnets is Sysrv-hello, which in addition to crypto-mining, propagates aggressively across the Internet in a worm-like manner by trolling for Remote Code Execution (RCE) vulnerabilities and SSH worming from the compromised victim devices. This all has the purpose of expanding the botnet.

First identified in December 2020, Sysrv-hello’s operators constantly update and change the bots’ behavior to evolve and stay ahead of security researchers and law enforcement. As such, infected systems can easily go unnoticed by both users and organizations. This blog examines the cyber kill chain sequence of a Sysrv-hello botnet infection detected at the network level by Darktrace DETECT/Network, as well as the botnet’s tactics, techniques, and procedures (TTPs) in March and April 2022.

Figure 1: Timeline of the attack

Delivery and exploitation

The organization, which was trialing Darktrace, had deployed the technology on March 2, 2022. On the very same day, the initial host infection was seen through the download of a first-stage PowerShell loader script from a rare external endpoint by a device in the internal network. Although initial exploitation of the device happened prior to the installation and was not observed, this botnet is known to target RCE vulnerabilities in various applications such as MySQL, Tomcat, PHPUnit, Apache Solar, Confluence, Laravel, JBoss, Jira, Sonatype, Oracle WebLogic and Apache Struts to gain initial access to internal systems.3 Recent iterations have also been reported to have been deployed via drive-by-downloads from an empty HTML iframe pointing to a malicious executable that downloads to the device from a user visiting a compromised website.4

Initial intrusion

The Sysrv-hello botnet is distributed for both Linux and Windows environments, with the corresponding compatible script pulled based on the architecture of the system. In this incident, the Windows version was observed.

On March 2, 2022 at 15:15:28 UTC, the device made a successful HTTP GET request to a malicious IP address5 that had a rarity score of 100% in the network. It subsequently downloaded a malicious PowerShell script named ‘ldr.ps1'6 onto the system. The associated IP address ‘194.145.227[.]21’ belongs to ‘ASN AS48693 Rices Privately owned enterprise’ and had been identified as a Sysrv-hello botnet command and control (C2) server in April the previous year. 3

Looking at the URI ‘/ldr.ps1?b0f895_admin:admin_81.255.222.82:8443_https’, it appears some form of query was being executed onto the object. The question mark ‘?’ in this URI is used to delimit the boundary between the URI of the queryable object and the set of strings used to express a query onto that object. Conventionally, we see the set of strings contains a list of key/value pairs with equal signs ‘=’, which are separated by the ampersand symbol ‘&’ between each of those parameters (e.g. www.youtube[.]com/watch?v=RdcCjDS0s6s&ab_channel=SANSCyberDefense), though the exact structure of the query string is not standardized and different servers may parse it differently. Instead, this case saw a set of strings with the hexadecimal color code #b0f895 (a light shade of green), admin username and password login credentials, and the IP address ‘81.255.222[.]82’ being applied during the object query (via HTTPS protocol on port 8443). In recent months this French IP has also had reports of abuse from the OSINT community.7

On March 2, 2022 at 15:15:33 UTC, the PowerShell loader script further downloaded second-stage executables named ‘sys.exe’ and ‘xmrig.2 sver.8 9 These have been identified as the worm and cryptocurrency miner payloads respectively.

Establish foothold

On March 2, 2022 at 17:46:55 UTC, after the downloads of the worm and cryptocurrency miner payloads, the device initiated multiple SSL connections in a regular, automated manner to Pastebin – a text storage website. This technique was used as a vector to download/upload data and drop further malicious scripts onto the host. OSINT sources suggest the JA3 client SSL fingerprint (05af1f5ca1b87cc9cc9b25185115607d) is associated with PowerShell usage, corroborating with the observation that further tooling was initiated by the PowerShell script ‘ldr.ps1’.

Continual Pastebin C2 connections were still being made by the device almost two months since the initiation of such connections. These Pastebin C2 connections point to new tactics and techniques employed by Sysrv-hello — reports earlier than May do not appear to mention any usage of the file storage site. These new TTPs serve two purposes: defense evasion using a web service/protocol and persistence. Persistence was likely achieved through scheduling daemons downloaded from this web service and shellcode executions at set intervals to kill off other malware processes, as similarly seen in other botnets.10 Recent reports have seen other malware programs also switch to Pastebin C2 tunnels to deliver subsequent payloads, scrapping the need for traditional C2 servers and evading detection.11

Figure 2: A section of the constant SSL connections that the device was still making to ‘pastebin[.]com’ even in the month of April, which resembles beaconing scheduled activity

Throughout the months of March and April, suspicious SSL connections were made from a second potentially compromised device in the internal network to the infected breach device. The suspicious French IP address ‘81.255.222[.]82’ previously seen in the URI object query was revealed as the value of the Server Name Indicator (SNI) in these SSL connections where, typically, a hostname or domain name is indicated.

After an initial compromise, attackers usually aim to gain long-term remote shell access to continue the attack. As the breach device does not have a public IP address and is most certainly behind a firewall, for it to be directly accessible from the Internet a reverse shell would need to be established. Outgoing connections often succeed because firewalls generally filter only incoming traffic. Darktrace observed the device making continuous outgoing connections to an external host listening on an unusual port, 8443, indicating the presence of a reverse shell for pivoting and remote administration.

Figure 3: SSL connections to server name ‘81.255.222[.]8’ at end of March and start of April

Accomplish mission

On March 4, 2022 at 15:07:04 UTC, the device made a total of 16,029 failed connections to a large volume of external endpoints on the same port (8080). This behavior is consistent with address scanning. From the country codes, it appears that public IP addresses for various countries around the world were contacted (at least 99 unique addresses), with the US being the most targeted.

From 19:44:36 UTC onwards, the device performed cryptocurrency mining using the Minergate mining pool protocol to generate profits for the attacker. A login credential called ‘x’ was observed in the Minergate connections to ‘194.145.227[.]21’ via port 5443. JSON-RPC methods of ‘login’ and ‘submit’ were seen from the connection originator (the infected breach device) and ‘job’ was seen from the connection responder (the C2 server). A high volume of connections using the JSON-RPC application protocol to ‘pool-fr.supportxmr[.]com’ were also made on port 80.

When the botnet was first discovered in December 2020, mining pools MineXMR and F2Pool were used. In February 2021, MineXMR was removed and in March 2021, Nanopool mining pool was added,12 before switching to the present SupportXMR and Minergate mining pools. Threat actors utilize such proxy pools to help hide the actual crypto wallet address where the contributions are made by the crypto-mining activity. From April onwards, the device appears to download the ‘xmrig.exe’ executable from a rare IP address ‘61.103.177[.]229’ in Korea every few days – likely in an attempt to establish persistency and ensure the cryptocurrency mining payload continues to exist on the compromised system for continued mining.

On March 9, 2022 from 18:16:20 UTC onwards, trolling for various RCE vulnerabilities (including but not limited to these four) was observed over HTTP connections to public IP addresses:

  1. Through March, the device made around 5,417 HTTP POSTs with the URI ‘/vendor/phpunit/phpunit/src/Util/PHP/eval-stdin.php’ to at least 99 unique public IPs. This appears to be related to CVE-2017-9841, which in PHPUnit allows remote attackers to execute arbitrary PHP code via HTTP POST data beginning with a ‘13 PHPUnit is a common testing framework for PHP, used for performing unit tests during application development. It is used by a variety of popular Content Management Systems (CMS) such as WordPress, Drupal and Prestashop. This CVE has been called “one of the most exploitable CVEs of 2019,” with around seven million attack attempts being observed that year.14 This framework is not designed to be exposed on the critical paths serving web pages and should not be reachable by external HTTP requests. Looking at the status messages of the HTTP POSTs in this incident, some ‘Found’ and ‘OK’ messages were seen, suggesting the vulnerable path could be accessible on some of those endpoints.

Figure 4: PCAP of CVE-2017-9841 vulnerability trolling

Figure 5: The CVE-2017-9841 vulnerable path appears to be reachable on some endpoints

  1. Through March, the device also made around 5,500 HTTP POSTs with the URI ‘/_ignition/execute-solution’ to at least 99 unique public IPs. This appears related to CVE-2021-3129, which allows unauthenticated remote attackers to execute arbitrary code using debug mode with Laravel, a PHP web application framework in versions prior to 8.4.2.15 The POST request below makes the variable ‘username’ optional, and the ‘viewFile’ parameter is empty, as a test to see if the endpoint is vulnerable.16

Figure 6: PCAP of CVE-2021-3129 vulnerability trolling

  1. The device made approximately a further 252 HTTP GETs with URIs containing ‘invokefunction&function’ to another minimum of 99 unique public IPs. This appears related to a RCE vulnerability in ThinkPHP, an open-source web framework.17

Figure 7: Some of the URIs associated with ThinkPHP RCE vulnerability

  1. A HTTP header related to a RCE vulnerability for the Jakarta Multipart parser used by Apache struts2 in CVE-2017-563818 was also seen during the connection attempts. In this case the payload used a custom Content-Type header.

Figure 8: PCAP of CVE-2017-5638 vulnerability trolling

Two widely used methods of SSH authentication are public key authentication and password authentication. After gaining a foothold in the network, previous reports3 19 have mentioned that Sysrv-hello harvests private SSH keys from the compromised device, along with identifying known devices. Being a known device means the system can communicate with the other system without any further authentication checks after the initial key exchange. This technique was likely performed in conjunction with password brute-force attacks against the known devices. Starting from March 9, 2022 at 20:31:25 UTC, Darktrace observed the device making a large number of SSH connections and login failures to public IP ranges. For example, between 00:05:41 UTC on March 26 and 05:00:02 UTC on April 14, around 83,389 SSH connection attempts were made to 31 unique public IPs.

Figure 9: Darktrace’s Threat Visualizer shows large spikes in SSH connections by the breach device

Figure 10: Beaconing SSH connections to a single external endpoint, indicating a potential brute-force attack

Darktrace coverage

Cyber AI Analyst was able to connect the events and present them in a digestible, chronological order for the organization. In the aftermath of any security incidents, this is a convenient way for security users to conduct assisted investigations and reduce the workload on human analysts. However, it is good to note that this activity was also easily observed in real time from the model section on the Threat Visualizer due to the large number of escalating model breaches.

Figure 11: Cyber AI Analyst consolidating the events in the month of March into a summary

Figure 12: Cyber AI Analyst shows the progression of the attack through the month of March

As this incident occurred during a trial, Darktrace RESPOND was enabled in passive mode – with a valid license to display the actions that it would have taken, but with no active control performed. In this instance, no Antigena models breached for the initial compromised device as it was not tagged to be eligible for Antigena actions. Nonetheless, Darktrace was able to provide visibility into these anomalous connections.

Had Antigena been deployed in active mode, and the breach device appropriately tagged with Antigena All or Antigena External Threat, Darktrace would have been able to respond and neutralize different stages of the attack through network inhibitors Block Matching Connections and Enforce Group Pattern of Life, and relevant Antigena models such as Antigena Suspicious File Block, Antigena Suspicious File Pattern of Life Block, Antigena Pastebin Block and Antigena Crypto Currency Mining Block. The first of these inhibitors, Block Matching Connections, will block the specific connection and all future connections that matches the same criteria (e.g. all future outbound HTTP connections from the breach device to destination port 80) for a set period of time. Enforce Group Pattern of Life allows a device to only make connections and data transfers that it or any of its peer group typically make.

Conclusion

Resource hijacking results in unauthorized consumption of system resources and monetary loss for affected organizations. Compromised devices can potentially be rented out to other threat actors and botnet operators could switch from conducting crypto-mining to other more destructive illicit activities (e.g. DDoS or dropping of ransomware) whilst changing their TTPs in the future. Defenders are constantly playing catch-up to this continual evolution, and retrospective rules and signatures solutions or threat intelligence that relies on humans to spot future threats will not be able to keep up.

In this case, it appears the botnet operator has added an object query in the URL of the initial PowerShell loader script download, added Pastebin C2 for evasion and persistence, and utilized new cryptocurrency mining pools. Despite this, Darktrace’s Self-Learning AI was able to identify the threats the moment attackers changed their approach, detecting every step of the attack in the network without relying on known indicators of threat.

Appendix

Darktrace model detections

  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Device / External Address Scan
  • Compromise / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / SSL Beaconing to Rare Destination
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Device / Large Number of Model Breaches
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / SSH Brute Force
  • Compromise / SSH Beacon
  • Compliance / SSH to Rare External AWS
  • Compromise / High Frequency SSH Beacon
  • Compliance / SSH to Rare External Destination
  • Device / Multiple C2 Model Breaches
  • Anomalous Connection / POST to PHP on New External Host

MITRE ATT&CK techniques observed:

IoCs

Thanks to Victoria Baldie and Yung Ju Chua for their contributions.

Footnotes

1. https://www.darktrace.com/en/blog/crypto-botnets-moving-laterally

2. https://www.darktrace.com/en/blog/how-ai-uncovered-outlaws-secret-crypto-mining-operation

3. https://www.lacework.com/blog/sysrv-hello-expands-infrastructure

4. https://www.riskiq.com/blog/external-threat-management/sysrv-hello-cryptojacking-botnet

5. https://www.virustotal.com/gui/ip-address/194.145.227.21

6. https://www.virustotal.com/gui/url/c586845daa2aec275453659f287dcb302921321e04cb476b0d98d731d57c4e83?nocache=1

7. https://www.abuseipdb.com/check/81.255.222.82

8. https://www.virustotal.com/gui/file/586e271b5095068484446ee222a4bb0f885987a0b77e59eb24511f6d4a774c30

9. https://www.virustotal.com/gui/file/f5bef6ace91110289a2977cfc9f4dbec1e32fecdbe77326e8efe7b353c58e639

10. https://www.ironnet.com/blog/continued-exploitation-of-cve-2021-26084

11. https://www.zdnet.com/article/njrat-trojan-operators-are-now-using-pastebin-as-alternative-to-central-command-server

12. https://blogs.juniper.net/en-us/threat-research/sysrv-botnet-expands-and-gains-persistence

13. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9841

14. https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability

15. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3129

16. https://isc.sans.edu/forums/diary/Laravel+v842+exploit+attempts+for+CVE20213129+debug+mode+Remote+code+execution/27758

17. https://securitynews.sonicwall.com/xmlpost/thinkphp-remote-code-execution-rce-bug-is-actively-being-exploited

18. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

19. https://sysdig.com/blog/crypto-sysrv-hello-wordpress

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Shuh Chin Goh

More in this series

No items found.

Blog

/

Network

/

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving tactics

man on computer doing work scattered spider cybersecurityDefault blog imageDefault blog image

What is Scattered Spider?

Scattered Spider is a native English-speaking group, also referred to, or closely associated with, aliases such as UNC3944, Octo Tempest and Storm-0875. They are primarily financially motivated with a clear emphasis on leveraging social engineering, SIM swapping attacks, exploiting legitimate tooling as well as using Living-Off-the-Land (LOTL) techniques [1][2].

In recent years, Scattered Spider has been observed employing a shift in tactics, leveraging Ransomware-as-a-Service (RaaS) platforms in their attacks. This adoption reflects a shift toward more scalable attacks with a lower barrier to entry, allowing the group to carry out sophisticated ransomware attacks without the need to develop it themselves.

While RaaS offerings have been available for purchase on the Dark Web for several years, they have continued to grow in popularity, providing threat actors a way to cause significant impact to critical infrastructure and organizations without requiring highly technical capabilities [12].

This blog focuses on the group’s recent changes in tactics, techniques, and procedures (TTPs) reported by open-source intelligence (OSINT) and how TTPs in a recent Scattered Spider attack observed by Darktrace compare.

How has Scattered Spider been reported to operate?

First observed in 2022, Scattered Spider is known to target various industries globally including telecommunications, technology, financial services, and commercial facilities.

Overview of key TTPs

Scattered Spider has been known to utilize the following methods which cover multiple stages of the Cyber Kill Chain including initial access, lateral movement, evasion, persistence, and action on objective:

Social engineering [1]:

Impersonating staff via phone calls, SMS and Telegram messages; obtaining employee credentials (MITRE techniques T1598,T1656), multi-factor authentication (MFA) codes such as one-time passwords, or convincing employees to run commercial remote access tools enabling initial access (MITRE techniques T1204,T1219,T1566)

  • Phishing using specially crafted domains containing the victim name e.g. victimname-sso[.]com
  • MFA fatigue: sending repeated requests for MFA approval with the intention that the victim will eventually accept (MITRE technique T1621)

SIM swapping [1][3]:

  • Includes hijacking phone numbers to intercept 2FA codes
  • This involves the actor migrating the victim's mobile number to a new SIM card without legitimate authorization

Reconnaissance, lateral movement & command-and-control (C2) communication via use of legitimate tools:

  • Examples include Mimikatz, Ngrok, TeamViewer, and Pulseway [1]. A more recently reported example is Teleport [3].

Financial theft through their access to victim networks: Extortion via ransomware, data theft (MITRE technique T1657) [1]

Bring Your Own Vulnerable Driver (BYOVD) techniques [4]:

  • Exploiting vulnerable drivers to evade detection from Endpoint Detection and Response (EDR) security products (MITRE technique T1068) frequently used against Windows devices.

LOTL techniques

LOTL techniques are also closely associated with Scattered Spider actors once they have gained initial access; historically this has allowed them to evade detection until impact starts to be felt. It also means that specific TTPs may vary from case-to-case, making it harder for security teams to prepare and harden defences against the group.

Prominent Scattered Spider attacks over the years

While attribution is sometimes unconfirmed, Scattered Spider have been linked with a number of highly publicized attacks since 2022.

Smishing attacks on Twilio: In August 2022 the group conducted multiple social engineering-based attacks. One example was an SMS phishing (smishing) attack against the cloud communication platform Twilio, which led to the compromise of employee accounts, allowing actors to access internal systems and ultimately target Twilio customers [5][6].

Phishing and social engineering against MailChimp: Another case involved a phishing and social engineering attack against MailChimp. After gaining access to internal systems through compromised employee accounts the group conducted further attacks specifically targeting MailChimp users within cryptocurrency and finance industries [5][7].

Social engineering against Riot Games: In January 2023, the group was linked with an attack on video game developer Riot Games where social engineering was once again used to access internal systems. This time, the attackers exfiltrated game source code before sending a ransom note [8][9].

Attack on Caesars & MGM: In September 2023, Scattered Spider was linked with attacked on Caesars Entertainment and MGM Resorts International, two of the largest casino and gambling companies in the United States. It was reported that the group gathered nearly six terabytes of stolen data from the hotels and casinos, including sensitive information of guests, and made use of the RaaS strain BlackCat [10].

Ransomware against Marks & Spencer: More recently, in April 2025, the group has also been linked to the alleged ransomware incident against the UK-based retailer Marks & Spencer (M&S) making use of the DragonForce RaaS [11].

How a recent attack observed by Darktrace compares

In May 2025, Darktrace observed a Scattered Spider attack affecting one of its customers. While initial access in this attack fell outside of Darktrace’s visibility, information from the affected customer suggests similar social engineering techniques involving abuse of the customer’s helpdesk and voice phishing (vishing) were used for reconnaissance.

Initial access

It is believed the threat actor took advantage of the customer’s third-party Software-as-a-Service (SaaS) applications, such as Salesforce during the attack.

Such applications are a prime target for data exfiltration due to the sensitive data they hold; customer, personnel, and business data can all prove useful in enabling further access into target networks.

Techniques used by Scattered Spider following initial access to a victim network tend to vary more widely and so details are sparser within OSINT. However, Darktrace is able to provide some additional insight into what techniques were used in this specific case, based on observed activity and subsequent investigation by its Threat Research team.

Lateral movement

Following initial access to the customer’s network, the threat actor was able to pivot into the customer’s Virtual Desktop Infrastructure (VDI) environment.

Darktrace observed the threat actor spinning up new virtual machines and activating cloud inventory management tools to enable discovery of targets for lateral movement.

In some cases, these virtual machines were not monitored or managed by the customer’s security tools, allowing the threat actor to make use of additional tooling such as AnyDesk which may otherwise have been blocked.

Tooling in further stages of the attack sometimes overlapped with previous OSINT reporting on Scattered Spider, with anomalous use of Ngrok and Teleport observed by Darktrace, likely representing C2 communication. Additional tooling was also seen being used on the virtual machines, such as Pastebin.

 Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.
Figure 1: Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.

Leveraging LOTL techniques

Alongside use of third-party tools that may have been unexpected on the network, various LOTL techniques were observed during the incident; this primarily involved the abuse of standard network protocols such as:

  • SAMR requests to alter Active Directory account details
  • Lateral movement over RDP and SSH
  • Data collection over LDAP and SSH

Coordinated exfiltration activity linked through AI-driven analysis

Multiple methods of exfiltration were observed following internal data collection. This included SSH transfers to IPs associated with Vultr, alongside significant uploads to an Amazon S3 bucket.

While connections to this endpoint were not deemed unusual for the network at this stage due to the volume of traffic seen, Darktrace’s Cyber AI Analyst was still able to identify the suspiciousness of this behavior and launched an investigation into the activity.

Cyber AI Analyst successfully correlated seemingly unrelated internal download and external upload activity across multiple devices into a single, broader incident for the customer’s security team to review.

Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 2: Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 3: Cyber AI Analyst’s detection of internal data downloads and subsequent external uploads to an Amazon S3 bucket.

Exfiltration and response

Unfortunately, as Darktrace was not configured in Autonomous Response mode at the time, the attack was able to proceed without interruption, ultimately escalating to the point of data exfiltration.

Despite this, Darktrace was still able to recommend several Autonomous Response actions, aimed at containing the attack by blocking the internal data-gathering activity and the subsequent data exfiltration connections.

These actions required manual approval by the customer’s security team and as shown in Figure 3, at least one of the recommended actions was subsequently approved.

Had Darktrace been enabled in Autonomous Response mode, these measures would have been applied immediately, effectively halting the data exfiltration attempts.

Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.
Figure 4: Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.

Scattered Spider’s use of RaaS

In this recent Scattered Spider incident observed by Darktrace, exfiltration appears to have been the primary impact. While no signs of ransomware deployment were observed here, it is possible that this was the threat actors’ original intent, consistent with other recent Scattered Spider attacks involving RaaS platforms like DragonForce.

DragonForce emerged towards the end of 2023, operating by offering their platform and capabilities on a wide scale. They also launched a program which offered their affiliates 80% of the eventual ransom, along with tools for further automation and attack management [13].

The rise of RaaS and attacker customization is fragmenting TTPs and indicators, making it harder for security teams to anticipate and defend against each unique intrusion.

While DragonForce appears to be the latest RaaS used by Scattered Spider, it is not the first, showcasing the ongoing evolution of tactics used the group.

In addition, the BlackCat RaaS strain was reportedly used by Scattered Spider for their attacks against Caesars Entertainment and MGM Resorts International [10].

In 2024 the group was also seen making use of additional RaaS strains; RansomHub and Qilin [15].

What security teams and CISOs can do to defend against Scattered Spider

The ongoing changes in tactics used by Scattered Spider, reliance on LOTL techniques, and continued adoption of evolving RaaS providers like DragonForce make it harder for organizations and their security teams to prepare their defenses against such attacks.

CISOs and security teams should implement best practices such as MFA, Single Sign-On (SSO), notifications for suspicious logins, forward logging, ethical phishing tests.

Also, given Scattered Spider’s heavy focus on social engineering, and at times using their native English fluency to their advantage, it is critical to IT and help desk teams are reminded they are possible targets.

Beyond social engineering, the threat actor is also adept at taking advantage of third-party SaaS applications in use by victims to harvest common SaaS data, such as PII and configuration data, that enable the threat actor to take on multiple identities across different domains.

With Darktrace’s Self-Learning AI, anomaly-based detection, and Autonomous Response inhibitors, businesses can halt malicious activities in real-time, whether attackers are using known TTPs or entirely new ones. Offerings such as Darktrace /Attack Surface Management enable security teams to proactively identify signs of malicious activity before it can cause an impact, while more generally Darktrace’s ActiveAI Security Platform can provide a comprehensive view of an organization’s digital estate across multiple domains.

Credit to Justin Torres (Senior Cyber Analyst), Emma Foulger (Global Threat Research Operations Lead), Zaki Al-Dhamari (Cyber Analyst), Nathaniel Jones (VP, Security & AI Strategy, FCISO), and Ryan Traill (Analyst Content Lead)

---------------------

The information provided in this blog post is for general informational purposes only and is provided "as is" without any representations or warranties, express or implied. While Darktrace makes reasonable efforts to ensure the accuracy and timeliness of the content related to cybersecurity threats such as Scattered Spider, we make no warranties or guarantees regarding the completeness, reliability, or suitability of the information for any purpose.

This blog post does not constitute professional cybersecurity advice, and should not be relied upon as such. Readers should seek guidance from qualified cybersecurity professionals or legal counsel before making any decisions or taking any actions based on the content herein.

No warranty of any kind, whether express or implied, including, but not limited to, warranties of performance, merchantability, fitness for a particular purpose, or non-infringement, is given with respect to the contents of this post.

Darktrace expressly disclaims any liability for any loss or damage arising from reliance on the information contained in this blog.

Appendices

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-320a

[2] https://attack.mitre.org/groups/G1015/

[3] https://www.rapid7.com/blog/post/scattered-spider-rapid7-insights-observations-and-recommendations/

[4] https://www.crowdstrike.com/en-us/blog/scattered-spider-attempts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

[5] https://krebsonsecurity.com/2024/06/alleged-boss-of-scattered-spider-hacking-group-arrested/?web_view=true

[6] https://www.cxtoday.com/crm/uk-teenager-accused-of-hacking-twilio-lastpass-mailchimp-arrested/

[7] https://mailchimp.com/newsroom/august-2022-security-incident/

[8] https://techcrunch.com/2023/02/02/0ktapus-hackers-are-back-and-targeting-tech-and-gaming-companies-says-leaked-report/

[9] https://www.pcmag.com/news/hackers-behind-riot-games-breach-stole-league-of-legends-source-code

[10] https://www.bbrown.com/us/insight/a-look-back-at-the-mgm-and-caesars-incident/

[11] https://cyberresilience.com/threatonomics/scattered-spider-uk-retail-attacks/

[12] https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/

[13] https://www.group-ib.com/blog/dragonforce-ransomware/
[14] https://blackpointcyber.com/wp-content/uploads/2024/11/DragonForce.pdf
[15] https://x.com/MsftSecIntel/status/1812932749314978191?lang=en

Select MITRE tactics associated with Scattered Spider

Tactic – Technique – Technique Name

Reconnaissance - T1598 -   Phishing for Information

Initial Access - T1566 – Phishing

Execution - T1204 - User Execution

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Defense Evasion - T1656 - Impersonation

Credential Access - T1621 - Multi-Factor Authentication Request Generation

Lateral Movement - T1021 - Remote Services

Command and Control - T1102 - Web Service

Command and Control - T1219 - Remote Access Tools

Command and Control - T1572 - Protocol Tunneling

Exfiltration - T1567 - Exfiltration Over Web Service

Impact - T1657 - Financial Theft

Select MITRE tactics associated with DragonForce

Tactic – Technique – Technique Name

Initial Access, Defense Evasion, Persistence, Privilege Escalation - T1078 - Valid Accounts

Initial Access, Persistence - T1133 - External Remote Services

Initial Access - T1190 - Exploit Public-Facing Application

Initial Access - T1566 – Phishing

Execution - T1047 - Windows Management Instrumentation

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Lateral Movement - T1021 - Remote Services

Impact - T1486 - Data Encrypted for Impact

Impact - T1657 - Financial Theft

Select Darktrace models

Compliance / Internet Facing RDP Server

Compliance / Incoming Remote Access Tool

Compliance / Remote Management Tool on Server

Anomalous File / Internet Facing System File Download

Anomalous Server Activity/ New User Agent from Internet Facing System

Anomalous Connection / Callback on Web Facing Device

Device / Internet Facing System with High Priority Alert

Anomalous Connection / Unusual Admin RDP

Anomalous Connection / High Priority DRSGetNCChanges

Anomalous Connection / Unusual Internal SSH

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / Pastebin

Anomalous Connection / Possible Tunnelling to Rare Endpoint

Compromise / Beaconing Activity to External Rare

Device / Long Agent Connection to New Endpoint

Compromise / SSH to Rare External AWS

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Large Volume of LDAP Download

Unusual Activity / Internal Data Transfer on New Device

Anomalous Connection / Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Compromise / Ransomware/Suspicious SMB Activity

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

July 24, 2025

Closing the Cloud Forensics and Incident Response Skills Gap

DFIR skills gap, man working on computer, SOC analyst, incident response, cloud incident responseDefault blog imageDefault blog image

Every alert that goes uninvestigated is a calculated risk — and teams are running out of room for error

Security operations today are stretched thin. SOCs face an overwhelming volume of alerts, and the shift to cloud has only made triage more complex.

Our research suggests that 23% of cloud alerts are never investigated, leaving risk on the table.

The rapid migration to cloud resources has security teams playing catch up. While they attempt to apply traditional on-prem tools to the cloud, it’s becoming increasingly clear that they are not fit for purpose. Especially in the context of forensics and incident response, the cloud presents unique complexities that demand cloud-specific solutions.

Organizations are increasingly adopting services from multiple cloud platforms (in fact, recent studies suggest 89% of organizations now operate multi-cloud environments), and container-based and serverless setups have become the norm. Security analysts already have enough on their plates; it’s unrealistic to expect them to be cloud experts too.

Why Digital Forensics and Incident Response (DFIR) roles are so hard to fill

Compounding these issues of alert fatigue and cloud complexity, there is a lack of DFIR talent. The cybersecurity skills gap is a well-known problem.

According to the 2024 ISC2 Cybersecurity Workforce Study, there is a global shortage of 4.8 million cybersecurity workers, up 19% from the previous year.

Why is this such an issue?

  • Highly specialized skill set: DFIR professionals need to have a deep understanding of various operating systems, network protocols, and security architectures, even more so when working in the cloud. They also need to be proficient in using a wide range of forensic tools and techniques. This level of expertise takes a lot of time and effort to develop.
  • Rapid technological changes: The cloud landscape is constantly changing and evolving with new services, monitoring tools, security mechanisms, and threats emerging regularly. Keeping up with these changes and staying current requires continuous learning and adaptation.
  • Lack of formal education and training: There are limited educational programs specifically dedicated for DFIR. Further, an industry for cloud DFIR has yet to be defined. While some universities and institutions offer courses or certifications in digital forensics, they may not cover the full spread of knowledge required in real-world incident response scenarios, especially for cloud-based environments.
  • High-stress nature of the job: DFIR professionals often work under tight deadlines in high-pressure situations, especially when handling security incidents. This can lead to burnout and high turnover rates in the profession.

Bridging the skills gap with usable cloud digital forensics and incident response tools  

To help organizations close the DFIR skills gap, it's critical that we modernize our approaches and implement a new way of doing things in DFIR that's fit for the cloud era. Modern cloud forensics and incident response platforms must prioritize usability in order to up-level security teams. A platform that is easy to use has the power to:

  • Enable more advanced analysts to be more efficient and have the ability to take on more cases
  • Uplevel more novel analysts to perform more advanced tasks than ever before
  • Eliminate cloud complexity– such as the complexities introduced by multi-cloud environments and container-based and serverless setups

What to look for in cloud forensics and incident response solutions

The following features greatly improve the impact of cloud forensics and incident response:

Data enrichment: Automated correlation of collected data with threat intelligence feeds, both external and proprietary, delivers immediate insight into suspicious or malicious activities. Data enrichment expedites investigations, enabling analysts to seamlessly pivot from key events and delve deeper into the raw data.

Single timeline view: A unified perspective across various cloud platforms and data sources is crucial. A single timeline view empowers security teams to seamlessly navigate evidence based on timestamps, events, users, and more, enhancing investigative efficiency. Pulling together a timeline has historically been a very time consuming task when using traditional approaches.

Saved search: Preserving queries during investigations allows analysts to re-execute complex searches or share them with colleagues, increasing efficiency and collaboration.

Faceted search: Facet search options provide analysts with quick insights into core data attributes, facilitating efficient dataset refinement.

Cross-cloud investigations: Analyzing evidence acquired from multiple cloud providers in a single platform is crucial for security teams. A unified view and timeline across cross cloud is critical in streamlining investigations.

How Darktrace can help

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

Not only does Darktrace offer centralized automation solutions for cloud forensics and investigation, but it also delivers a proactive approach Cloud Detection and Response (CDR). Darktrace / CLOUD is built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI