Blog
/
/
April 7, 2020

Four Ways Cyber-Criminals Fly Under the Radar

Learn how cyber criminals evade detection. Darktrace analyses the four ways they operate under the radar. Read here to stay vigilant against cyber attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oliver Rochford
Technical Director
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Apr 2020

The challenge of reliably attributing cyber-threats has amplified in recent years, as adversaries adopt a collection of techniques to ensure that even if their attacks are caught, they themselves escape detection and avoid punishment.

Detecting a threat is, of course, a very different technical challenge compared to tracing that activity back to a human operator. Nevertheless, at some point after the dust has settled, during the post-hoc incident analysis for example, someone somewhere may need to know who the suspects are. And in spite of all of our other advances, and also some recent successes in attributing offensive and cyber-criminal acts, only three out of every 100,000 cyber-crimes are prosecuted. Put simply, this is still an unsolved set of problems. Many of the successes we do have can be attributed more to operational security fails on the criminals’ end than any other active approaches. In fact, some recent trends have actually made reliable attribution even more challenging.

The four cyber-threat trends that make attribution difficult

There are four related trends in how threat-actors can procure and obtain attack capabilities that have resulted in an increase in complexity when attempting to reliably identify Tools, Techniques, and Procedures (TTPs) and attributing them to distinct threat-actors.

A Cybercrime-as-a-Service economy and supply chain allowing cyber-criminals to mix and match off the shelf offensive cyber capabilities.

Expansion of ‘Living off the Land’ (LoL) tool usage by threat-actors to evade traditional, signature-based security defenses, and to obfuscate their activity.

While Code Reuse has always existed in the hacker community, copying nation-state-grade attack code has recently become possible.

The barrier to entry for criminally motivated operators has been lowered, providing the means for less technical criminals, who are only limited by time and their imagination.

Figure 1: The four cyber-threat trends

Threat-actors can mix and match attack tools, creating attack stacks that can be tailored for a variety of campaigns.

Between a professional marketplace of cyber-crime tools and services, the increasing adoption of ‘Living off the Land’ techniques, and the reusing of code leaked from nation-state intelligence services, threat-actors with even the most limited technical ability can conduct highly sophisticated criminal campaigns. Prospective cyber-criminals now have four primary types of attack tools to choose from – with three of them brand new or greatly enhanced. Even more importantly, these threat-actors can mix and match attack tools, creating tactically flexible attack stacks that can be tailored for a variety of campaigns against a diverse set of victims.

Off the shelf attacks

The burgeoning and increasingly professional Cybercrime-as-a-Service market (estimated at $1.6B) provides a thriving marketplace of microservices, attack code, and attack platforms. Anyone with a motive and enough bitcoin and enthusiasm can become the next ‘cyber Don Corleone’. Many of these services offer dedicated account management and professional support 24 hours a day. The commercialization of the cyber-crime supply chain has raised the barrier to entry for Cybercrime-as-a-Service vendors, while at the same time lowering it for cyber-criminal operators.

Living off the Land

‘Living off the Land’ (LoL) and “malware-less” attacks have been on the rise for some time now. What makes these attack methods so dangerous is that they leverage standard operating system tools to conduct their nefarious business, making signature-based approaches that look for malware heuristics ineffective – including signature-based Intrusion Protection Systems.

These attacks in particular demonstrate the need for an approach to cyber security that goes beyond looking at what malware is being used. Rather than relying on static blacklists, security teams are instead turning to a more sophisticated approach that learns ‘normal’ for every user and device across an entire business. From that evolving baseline, this approach to defense can identify and contain anomalous activity indicative of a cyber-threat – all in real time.

Code reuse and repurpose

What is new, and unprecedented, is that cyber-criminals are gaining access to intelligence and nation-state grade attack code.

Hackers have always begged, borrowed, and stolen code from others, including attack code – just two notable examples include the Zeus trojan and RIG exploit kit code leaks that provided the code base for much of the current generation of threats. What is new and unprecedented is that, whether through malice or incompetence, cyber-criminals are gaining access to intelligence and nation-state grade attack code. The Shadowbroker leaks that resulted in Wannacry is one recent example of this trend, and one we expect to accelerate – especially with intelligence services actively outing each other’s methods.

Custom and bespoke techniques

The practice of hackers creating their own tools and researching their own exploits has a long and hallowed tradition, with headline-grabbing zero-days becoming more and more common. Nation-state actors in particular often make a distinction between attack operators and attack code developers, with the ability to request tailored and bespoke code and tools – not unlike the model that has been replicated in the Cybercrime-as-a-Service market. Even when developing custom tools, threat-actors frequently integrate code and exploits from other parties.

Figure 2: The four main attack tool types

When determining who is actually behind these attacks, though, what is most important is the ability to combine all four types of attack tools – this provides a further layer of obfuscation against methods that rely on pattern matching for detection whilst causing additional confusion for would-be investigators. An attacker can use any combination and variation of these tool types to create a different “Chimera” attack stack – making it that much more difficult to identify who is really the operator. Telling apart the operator from the Cybercrime-as-a-Service vendor, for example, is difficult when most of the TTPs that are evaluated are technical and derive from the tooling.

Figure 3: The TTP and Attribution Confusion Chain

Conclusion

As the challenge of attribution intensifies, our focus must turn to defending against cyber-attacks themselves.

The combination of the four threat trends outlined above has lowered the barrier to entry for criminally motivated operators. Less technical adversaries are now able to launch attacks at a speed and scale previously confined to the most organized and well-financed cyber-criminal rings. This change in circumstances has made attribution of offensive cyber activity drastically more complex, and it may be some time before the prosecution rate for cyber-crime gets good enough that it can act as a greater disincentive.

As the challenge of attribution intensifies, our focus must turn to defending against cyber-attacks themselves. You may not ever know who is attacking you, but if you can successfully thwart the full range of threats, new and old, your organization can continue to operate as normal.

Fortunately, defenders’ abilities to detect and respond to cyber-threats have significantly advanced in recent years, thanks to the latest developments in AI and machine learning. Over 3,500 organizations now rely on Cyber AI to detect and contain cyber-threats – whether attackers use pre-existing OS tools to masquerade their attacks or use bespoke and entirely new techniques to bypass rules and signatures. When a threat is identified, AI can respond autonomously by enforcing a user or device’s ‘pattern of life’, allowing ‘business as usual’ whilst ensuring the organization is protected from harm.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oliver Rochford
Technical Director

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI