Blog
/
/
February 2, 2022

Why AAA Washington Chose Autonomous Response

Learn how AAA Washington improved cybersecurity with an autonomous response. Explore the reasons and benefits behind this strategic decision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ron Nichols
Senior Information Security Analyst at AAA Washington (Guest Contributor)
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Feb 2022

AAA Washington is best known for its emergency road service, but operates in a broader range of areas including insurance and travel. Our priorities from a security side are two-fold: making sure we are adequately prepared to defend against advanced and pertinent threats like ransomware, and protecting the sensitive data of our employees and our members.

About two years ago, we hit a fork in the road. Our information security team was conscious that we had a gap in real-time monitoring, and in particular, 24/7 response. It wasn’t that we didn’t already have tools in place, or that we weren’t shipping logs, we just didn’t have a 24/7 protocol. So if an attack were to come in at 3am, for example, we weren’t confident enough in our ability to take immediate action to contain the threat.

So we looked at two options. It was our Matrix ‘red pill or blue pill’ moment: a choice between the willingness to learn a life-changing truth by taking the red pill, or taking the blue pill and opting for the more traditional path.

For us, that blue pill – and what many recommended at the time – was the option of consulting an external 24/7 Security Operations Center. We knew this would solve our problem, but it also had a lot of drawbacks, mainly around time consumption: you have to get a service-level agreement (SLA) in place, set up SNMP traps, ship logs over to the SOC, who are then tasked with untangling those logs. You know that the SOC is then looking at AAA Washington’s environment along with hundreds of others. You’ve got to develop a relationship with the SOC technician who doesn’t know the nuances of your environment or your business logic…

So understandably there was a level of reluctance there.

And then we had the red pill, which for us, was Darktrace, offering AI technology that could learn our environment all by itself, and respond autonomously to emerging attacks. No steep learning curve, no ongoing maintenance.

We had to try it. Cloud deployments are available but even for our on-prem arrangement, the trial process was a no-brainer: we got the box, plugged it in, and we were off and going. If we didn’t like it, all we had to do was unplug it and ship it back.

The visibility Darktrace gave us was immediately apparent, and in that first week it alerted us to the fact that every other night, 1GB of outbound traffic was going to an East Coast data center from our back-up appliance. We thought we knew what was going on in our digital enterprise, but we had no idea – Darktrace providing that knowledge and filling those gaps showed us that this was heading exactly in the direction we wanted.

Autonomous Response

So full marks for visibility and anomaly detection, but what about that response capability that led us to consider Darktrace in the first place? We were keen to see what actions Antigena would recommend and assess their accuracy and severity.

Being naturally risk-averse at AAA Washington, we initially set Antigena up in human confirmation mode, meaning an operator had to give the green light before it took action. It took about two weeks for it to learn the nuances of our digital environment, and it wasn’t long before we found its actions were extremely accurate, and minimally disruptive.

It never took drastic action like quarantining a device, it simply stopped what we needed it to. It played a significant role in protecting us in the wake of some high-profile attacks, including the SUNBURST attacks and the more recent Log4shell vulnerability.

Adapting to a hybrid cloud strategy

In the two years since deploying Darktrace, we have made significant changes to our digital infrastructure – including, like so many others, migrating to the cloud. I wondered whether we would lose the visibility and protection we got from Darktrace when this happened.

But with its dedicated SaaS Modules for Microsoft 365 and others, Darktrace had this covered. It’s been able to shed a light on malicious activity occurring across our full Microsoft 365 product suite.

We can see things like unusual email forwarding rules that indicate an account takeover. With other tools, it takes six to eight clicks to find that information. The information is available, but accessing that data is a complex and convoluted process. Darktrace delivers that holy grail of having a single pane of glass view in a security tool. Having that detailed one stop view means reducing mean time to understanding, and mean time to response.

Self-Learning AI on the endpoint

And when large-scale remote working came about, Darktrace again brought visibility and Autonomous Response to cover our endpoint devices, protecting them from threats like ransomware that would go undetected from network coverage alone. The ability to stop these threats at the first hurdle, before they spread and infected other devices, was crucial for us.

It was another case of Darktrace adapting, and another reason I’m confident about working with Darktrace as a long-term partner: every time I think Darktrace is going to not be as relevant, these new developments bring us up to speed.

Keeping the show on the road

Darktrace has done exactly what we wanted to do by filling that gap we had in 24/7 response. But it has gone further by proving that time and time again, it can adapt as our digital infrastructure changes and grows, and can cover our employees wherever they work.

The technology presents us with all the information we need in a single pane of glass with the Threat Visualizer. With the Mobile App, I can get notifications of high-priority alerts and Darktrace’s autonomous actions, wherever I am. And when there’s a serious incident, there is always someone available to offer support and get me what I need to know, fast.

Taking that red pill all those months ago was one of the best decisions I’ve made as an IT security professional. Whatever challenges are down the road, I’m confident Darktrace will be there to meet them.

Hear from more Darktrace customers

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ron Nichols
Senior Information Security Analyst at AAA Washington (Guest Contributor)

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Canadian critical cyber systems protection actDefault blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI