Blog
/
/
March 27, 2025

Python-based Triton RAT Targeting Roblox Credentials

Cado Security Labs (now part of Darktrace) identified Triton RAT, a Python-based open-source tool controlled via Telegram.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Mar 2025

Introduction

Researchers from Cado Security Labs (now part of Darktrace) have identified a Python Remote Access Tool (RAT) named Triton RAT. The open-source RAT is available on GitHub and allows users to remotely access and control a system using Telegram. 

Technical analysis

In the version of the Triton RAT Pastebin. 

Telegram token and chat ID encoded in Base64
Figure 1: Telegram token and chat ID encoded in Base64

Features of Triton RAT:

  • Keylogging
  • Remote commands
  • Steal saved passwords
  • Steal Roblox security cookies
  • Change wallpaper
  • Screen recording
  • Webcam access
  • Gather Wifi Information
  • Download/upload file
  • Execute shell commands
  • Steal clipboard data
  • Anti-Analysis
  • Gather system information
  • Data exfiltrated to Telegram Bot

The TritonRAT code contains many functions including the function “sendmessage” which iterates over password stores in AppData, Google, Chrome, User Data, Local, and Local State, decrypts them and saves the passwords in a text file. Additionally, the RAT searches for Roblox security cookies (.ROBLOSECURITY) in Opera, Chrome, Edge, Chromium, Firefox and Brave, if found the cookies are stored in a text file and exfiltrated. A Roblox security cookie is a browser cookie that stores the users’ session and can be used to gain access to the Roblox account bypassing 2FA. 

Function to search for and exfiltrate Roblox security cookies
Figure 2: Function used to search for and exfiltrate Roblox security cookies
Function that gathers and exfiltrates system information 
Figure 3: Function that gathers and exfiltrates system information 
Secondary payload retrieved from DropBox 
Figure 4: Secondary payload retrieved from DropBox 

The Python script also contains code to create a VBScript and a BAT script which are executed with Powershell. The VBScript “updateagent.vbs” disables Windows Defender, creates backups and scheduled tasks for persistence and monitors specified processes. The BAT script “check.bat” retrieves a binary named “ProtonDrive.exe” from DropBox, stores it in a hidden folder and executes it with admin privileges. ProtonDrive is a pyinstaller compiled version of TritonRAT. Presumably the binary is retrieved to set up persistence. Once retrieved, ProtonDrive is stored in a created folder structure “C:\Users\user\AppData\Local\Programs\Proton\Drive”. Three scheduled tasks are created to start on logon of any user.

Tasks created
Figure 5: Three tasks created to start on logon of any user

For anti-analysis, Triton RAT contains a function that checks for “blacklisted” processes which include popular tools such as xdbg, ollydbg, FakeNet, and antivirus products. Additionally, the same Git user offers a file resizer as defense evasion as some anti-virus will not check a file over a certain amount of MB.  All the exfiltrated data is sent to Telegram via a Telegram bot, where the user can send commands to the affected machine. At the time of analysis, the Telegram channel/bot had 4549 messages, although it is unknown if these are indicative of the number of infections.  

Conclusion

The emergence of the Python-based Triton RAT highlights how quickly cybercriminals are evolving their tactics to target platforms with large user bases like Roblox. Its persistence mechanisms and reliance on Telegram for data exfiltration make it both resilient and easy for attackers to operate at scale. As threats like this continue to surface, it’s critical for organizations and individuals to reinforce endpoint protection, and promote strong credential security practices to reduce exposure to such attacks.

Indicators of compromise (IoCs)

ProtonDrive.exe

Ea04f1c4016383e0846aba71ac0b0c9c

Related samples:

076dccb222d0869870444fea760c7f2b564481faea80604c02abf74f1963c265

0975fdadbbd60d90afdcb5cc59ad58a22bfdb2c2b00a5da6bb1e09ae702b95e7

1f4e1aa937e81e517bccc3bd8a981553a2ef134c11471195f88f3799720eaa9c

200fdb4f94f93ec042a16a409df383afeedbbc73282ef3c30a91d5f521481f24

29d2a70eeedbe496515c71640771f1f9b71c4af5f5698e2068c6adcac28cc3e0

2b05494926b4b1c79ee0a12a4e7f6c07e04c084a953a4ba980ed7cb9b8bf6bc2

2d1b6bd0b945ddd8261efbd85851656a7351fd892be0fa62cc3346883a8f917e

2dce8fc1584e660a0cba4db2cacdf5ff705b1b3ba75611de0900ebaeaa420bf9

2f27b8987638b813285595762fa3e56fff2213086e9ba4439942cd470fa5669a

3f9ce4d12e0303faa59a307bcfc4366d02ba73e423dbf5bcf1da5178253db64d

4309e6a9abdfedc914df3393110a68bd4acfe922e9cd9f5f24abf23df7022af7

48231f2cf5bda35634fca2f98dc6e8581e8a65a2819d62bc375376fcd501ba2d

49b2ca4c1bd4405aa724ffaef266395be4b4581f1ff38b1fc092eab71e1adb6a

4b32dbd7a6ca7f91e75bacf055f4132be0952385d4d4fcbaf0970913876d64a1

566fc3f32633ce0b9a7154102bc1620a906473d5944dca8dea122cb63cb1bcaa

59793de10ed2d3684d0206f5f69cbebbba61d1f90a79dbd720d26bbf54226695

61a2c53390498716494ffa0b586aa6dc6c67baf03855845e2e3f2539f1f56563

6707ba64cccab61d3a658b23b28b232b1f601e3608b7d9e4767a1c0751bccd05

71fabe5022f613dc8e06d6dfda1327989e67be4e291f3761e84e3a988751caf8

78573a4c23f6ccdcbfce3a467fa93d2a1a49cf2f8dc7b595c0185e16b84828cb

78b246cbd9b1106d01659dd0ab65dc367486855b6b37869673bd98c560b6ff52

7bfdbceded56029bc32d89249e0195ebf47309fecded2b6578b035c52c43460b

7cb501e819fc98a55b9d19ad0f325084f6c4753785e30479502457ac7cb6289c

7fa70e18c414ae523e84c4a01d73e49f86ab816d129e8d7001fb778531adf3a7

8bc29a873b6144b6384a5535df5fc762c0c65e47a2caf0e845382c72f9d6671f

8c1db376bafcd071ffb59130d58ffcde45b2fa8e79dcc44c0a14574b9de55b43

a99ebd095d2ccda69855f2c700048658b8e425c90c916d5880f91c8aba634a2e

b656b7189925b043770a9738d8ae003d7401ac65a58e78c643937f4b44a3bc2c

b8dc2c5921f668f6cf8a355fd1cb79020b6752330be5e0db4bf96ae904d76249

b90af78927c6cb2d767f777d36031c9160aeb6fcd30090c3db3735b71274eb4e

bc1e211206c69fe399505e18380fb0068356d205c7929e2cb3d2fe0b4107d4e0

bf3c84a955f49c02a7f4fbf94dbbf089f26137fc75f5b36ac0b1bace9373d17a

c11d186e6d1600212565786ed481fbe401af598e1f689cf1ce6ff83b5a3b4371

cd42ae47c330c68cc8fd94cf5d91992f55992292b186991605b262ba1f776e8e

e1e2587ae2170d9c4533a6267f9179dff67d03f7adbb6d1fb4f43468d8f42c24

f389a8cbb88dae49559eaa572fc9288c253ed1825b1ce2a61e3d8ae998625e18

fc55895bb7d08e6ab770a05e55a037b533de809196f3019fbff0f1f58e688e5f

MITRE ATT&CK

T1053.005 Scheduled Task/Job: Scheduled Task

T1059.006 Command and Scripting Interpreter: Python

T1082 System Information Discovery

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1562.001 Impair Defenses: Disable or Modify Tools

T1132 Data Encoding

T1021 Remote Services

T1056.001 Input Capture: Keylogging

T1555 Credentials from Password Stores

T1539 Steal Web Session Cookie

T1546.015 Event Triggered Execution: Screensaver

T1113 Screen Capture

T1125 Video Capture

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1059 Command and Scripting Interpreter

T1115 Clipboard Data

T1497 Virtualization/Sandbox Evasion

T1020 Automated Exfiltration

YARA rule

rule Triton_RAT { 
   meta: 
       description = "Detects Python-based Triton RAT" 
       author = "tgould@cadosecurity.com" 
       date = "2025-03-06" 
   strings: 
       $telegram = "telebot.TeleBot" ascii 
       $extract_data = "def extract_data" ascii 
       $bot_token = "bot_token" ascii 
       $chat_id = "chat_id" ascii 
       $keylogger = "/keylogger" ascii 
       $stop_keylogger = "/stopkeylogger" ascii 
       $passwords = "/passwords" ascii 
       $clipboard = "/clipboard" ascii 
       $roblox_cookie = "/robloxcookie" ascii 
       $wifi_pass = "/wifipass" ascii 
       $sys_commands = "/(shutdown|restart|sleep|altf4|tasklist|taskkill|screenshot|mic|wallpaper|block|unblock)" ascii 
       $win_cmds = /(taskkill \/f \/im|wmic|schtasks \/create|attrib \+h|powershell\.exe -Command|reg add|netsh wlan show profile|net user|whoami|curl ipinfo\.io)/ ascii 
       $startup = "/addstartup" ascii 
       $winblocker = "/winblocker" ascii 
       $startup_scripts = /(C:\\Windows\\System32\\updateagent\.vbs|check\.bat|watchdog\.vbs)/ ascii 
   condition: 
       any of ($telegram, $extract_data, $bot_token, $chat_id) and 
       4 of ($keylogger, $stop_keylogger, $passwords, $clipboard, $roblox_cookie, $wifi_pass, 
             $sys_commands, $win_cmds, $startup, $winblocker, $startup_scripts) 
} 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

September 23, 2025

It’s Time to Rethink Cloud Investigations

cloud investigationsDefault blog imageDefault blog image

Cloud Breaches Are Surging

Cloud adoption has revolutionized how businesses operate, offering speed, scalability, and flexibility. But for security teams, this transformation has introduced a new set of challenges, especially when it comes to incident response (IR) and forensic investigations.

Cloud-related breaches are skyrocketing – 82% of breaches now involve cloud-stored data (IBM Cost of a Data Breach, 2023). Yet incidents often go unnoticed for days: according to a 2025 report by Cybersecurity Insiders, of the 65% of organizations experienced a cloud-related incident in the past year, only 9% detected it within the first hour, and 62% took more than 24 hours to remediate it (Cybersecurity Insiders, Cloud Security Report 2025).

Despite the shift to cloud, many investigation practices remain rooted in legacy on-prem approaches. According to a recent report, 65% of organizations spend approximately 3-5 days longer when investigating an incident in the cloud vs. on premises.

Cloud investigations must evolve, or risk falling behind attackers who are already exploiting the cloud’s speed and complexity.

4 Reasons Cloud Investigations Are Broken

The cloud’s dynamic nature – with its ephemeral workloads and distributed architecture – has outpaced traditional incident response methods. What worked in static, on-prem environments simply doesn’t translate.

Here’s why:

  1. Ephemeral workloads
    Containers and serverless functions can spin up and vanish in minutes. Attackers know this as well – they’re exploiting short-lived assets for “hit-and-run” attacks, leaving almost no forensic footprint. If you’re relying on scheduled scans or manual evidence collection, you’re already too late.
  2. Fragmented tooling
    Each cloud provider has its own logs, APIs, and investigation workflows. In addition, not all logs are enabled by default, cloud providers typically limit the scope of their logs (both in terms of what data they collect and how long they retain it), and some logs are only available through undocumented APIs. This creates siloed views of attacker activity, making it difficult to piece together a coherent timeline. Now layer in SaaS apps, Kubernetes clusters, and shadow IT — suddenly you’re stitching together 20+ tools just to find out what happened. Analysts call it the ‘swivel-chair Olympics,’ and it’s burning hours they don’t have.
  3. SOC overload
    Analysts spend the bulk of their time manually gathering evidence and correlating logs rather than responding to threats. This slows down investigations and increases burnout. SOC teams are drowning in noise; they receive thousands of alerts a day, the majority of which never get touched. False positives eat hundreds of hours a month, and consequently burnout is rife.  
  4. Cost of delay
    The longer an investigation takes, the higher its cost. Breaches contained in under 200 days save an average of over $1M compared to those that linger (IBM Cost of a Data Breach 2025).

These challenges create a dangerous gap for threat actors to exploit. By the time evidence is collected, attackers may have already accessed or exfiltrated data, or entrenched themselves deeper into your environment.

What’s Needed: A New Approach to Cloud Investigations

It’s time to ditch the manual, reactive grind and embrace investigations that are automated, proactive, and built for the world you actually defend. Here’s what the next generation of cloud forensics must deliver:

  • Automated evidence acquisition
    Capture forensic-level data the moment a threat is detected and before assets disappear.
  • Unified multi-cloud visibility
    Stitch together logs, timelines, and context across AWS, Azure, GCP, and hybrid environments into a single unified view of the investigation.
  • Accelerated investigation workflows
    Reduce time-to-insight from hours or days to minutes with automated analysis of forensic data, enabling faster containment and recovery.
  • Empowered SOC teams
    Fully contextualised data and collaboration workflows between teams in the SOC ensure seamless handover, freeing up analysts from manual collection tasks so they can focus on what matters: analysis and response.

Attackers are already leveraging the cloud’s agility. Defenders must do the same — adopting solutions that match the speed and scale of modern infrastructure.

Cloud Changed Everything. It’s Time to Change Investigations.  

The cloud fundamentally reshaped how businesses operate. It’s time for security teams to rethink how they investigate threats.

Forensics can no longer be slow, manual, and reactive. It must be instant, automated, and cloud-first — designed to meet the demands of ephemeral infrastructure and multi-cloud complexity.

The future of incident response isn’t just faster. It’s smarter, more scalable, and built for the environments we defend today, not those of ten years ago.  

On October 9th, Darktrace is revealing the next big thing in cloud security. Don’t miss it – sign up for the webinar.

darktrace live event launch
Continue reading
About the author
Kellie Regan
Director, Product Marketing - Cloud Security

Blog

/

/

September 22, 2025

Understanding the Canadian Critical Cyber Systems Protection Act

Canadian critical cyber systems protection actDefault blog imageDefault blog image

Introduction: The Canadian Critical Cyber Systems Protection Act

On 18 June 2025, the Canadian federal Government introduced Bill C-8 which, if adopted following completion of the legislative process, will enact the Critical Cyber Systems Protection Act (CCSPA) and give Canada its first federal, cross-sector and legally binding cybersecurity regime for designated critical infrastructure providers. As of August 2025, the Bill has completed first reading and stands at second reading in the Canadian House of Commons.

Political context

The measure revives most of the stalled 2022 Bill C-26 “An Act Respecting Cyber Security” which “died on Paper” when Parliament was prorogued in January 2025, in the wake of former Prime Minister Justin Trudeau’s resignation.

The new government, led by Mark Carney since March 2025, has re-tabled the package with the same two-part structure: (1) amendments to the Telecommunications Act that enable security directions to telecoms; and (2) a new CCSPA setting out mandatory cybersecurity duties for designated operators. This blog focuses on the latter.

If enacted, Canada will join fellow Five Eyes partners such as the United Kingdom and Australia, which already impose statutory cyber-security duties on operators of critical national infrastructure.

The case for new cybersecurity legislation in Canada

The Canadian cyber threat landscape has expanded. The country's national cyber authority, the Canadian Centre for Cybersecurity (Cyber Centre), recently assessed that the number of cyber incidents has “sharply increased” in the last two years, as has the severity of those incidents, with essential services providers among the targets. Likewise, in its 2025-2026 National Cyber Threat Assessment, the Cyber Centre warned that AI technologies are “amplifying cyberspace threats” by lowering barriers to entry, improving the speed and sophistication of social-engineering attacks and enabling more precise operations.

This context mirrors what we are seeing globally: adversaries, including state actors, are taking advantage of the availability and sophistication of AI tools, which they have leverage to amplify the effectiveness of their operations. In this increasingly complex landscape, regulation must keep pace and evolve in step with the risk.

What the Canadian Critical Cyber Systems Protection Act aims to achieve

  • If enacted, the CCSPA will apply to operators in federally regulated critical infrastructure sectors which are vital to national security and public safety, as further defined in “Scope” below (the “Regulated Entities”), to adopt and comply with a minimum standard of cybersecurity duties (further described below)  which align with those its Five Eyes counterparts are already adhering to.

Who does the CCSPA apply to

The CCSPA would apply to designated operators that deliver services or systems within federal jurisdiction in the following priority areas:

  • telecommunications services
  • interprovincial or international pipeline and power line systems, nuclear energy systems, transportation systems
  • banking and clearing  
  • settlement systems

The CCSPA would also grant the Governor in Council (Federal Cabinet) with powers to add or remove entities in scope via regulation.

Scope of the CCSPA

The CCSPA introduces two key instruments:

First, it strengthens cyber threat information sharing between responsible ministers, sector regulators, and the Communications Security Establishment (through the Cyber Centre).

Second, it empowers the Governor in Council (GIC) to issue Cyber Security Directions (CSDs) - binding orders requiring a designated operator to implement specified measures to protect a critical cyber system within defined timeframes.

CSDs may be tailored to an individual operator or applied to a class of operators and can address technology, process, or supplier risks. To safeguard security and commercial confidentiality, the CCSPA restricts disclosure of the existence or content of a CSD except as necessary to carry it out.

Locating decision-making with the GIC ensures that CSDs are made with a cross-government view that weighs national security, economic priorities and international agreement.

New obligations for designated providers

The CCSPA would impose key cybersecurity compliance and obligations on designated providers. As it stands, this includes:

  1. Establishing and maintaining cybersecurity programs: these will need to be comprehensive, proportionate and developed proactively. Once implemented, they will need to be continuously reviewed
  2. Mitigating supply chain risks: Regulated Entities will be required to assess their third-party products and services by conducting a supply chain analysis, and take active steps to mitigate any identified risks
  3. Reporting incidents:  Regulated Entities will need to be more transparent with their reporting, by making the Communications Security Establishment (CSE) aware of any incident which has, or could potentially have, an impact on a critical system. The reports must be made within specific timelines, but in any event within no more than 72 hours;
  4. Compliance with cybersecurity directions:  the government will, under the CCSPA, have the authority to issue cybersecurity directives in an effort to remain responsive to emerging threats, which Regulated Entities will be required to follow once issued
  5. Record keeping: this shouldn’t be a surprise to many of those Regulated Entities which fall in scope, which are already likely to be subject to record keeping requirements. Regulated Entities should expect to be maintaining records and conducting audits of their systems and processes against the requirements of the CCSPA

It should be noted, however, that this may be subject to change, so Regulated Entities should keep an eye on the progress of the Bill as it makes its way through parliament.

Enforcement of the Act would be carried out by sector-specific regulators identified in the Act such as the Office of the Superintendent of Financial Institutions, Minister of Transport, Canada Energy Regulator, Canadian Nuclear Safety Commission and the Ministry of Industry.

What are the penalties for CCSPA non-compliance?

When assessing the penalties associated with non-compliance with the requirements of the CCSPA, it is clear that such non-compliance will be taken seriously, and the severity of the penalties follows the trend of those applied by the European Union to key pieces of EU legislation. The “administrative monetary penalties” (AMPs) set by regulation could see fines being applied of up to C$1 million for individuals and up to C$15 million for organizations.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI