Blog
/
/
March 27, 2025

Python-based Triton RAT Targeting Roblox Credentials

Cado Security Labs (now part of Darktrace) identified Triton RAT, a Python-based open-source tool controlled via Telegram.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Mar 2025

Introduction

Researchers from Cado Security Labs (now part of Darktrace) have identified a Python Remote Access Tool (RAT) named Triton RAT. The open-source RAT is available on GitHub and allows users to remotely access and control a system using Telegram. 

Technical analysis

In the version of the Triton RAT Pastebin. 

Telegram token and chat ID encoded in Base64
Figure 1: Telegram token and chat ID encoded in Base64

Features of Triton RAT:

  • Keylogging
  • Remote commands
  • Steal saved passwords
  • Steal Roblox security cookies
  • Change wallpaper
  • Screen recording
  • Webcam access
  • Gather Wifi Information
  • Download/upload file
  • Execute shell commands
  • Steal clipboard data
  • Anti-Analysis
  • Gather system information
  • Data exfiltrated to Telegram Bot

The TritonRAT code contains many functions including the function “sendmessage” which iterates over password stores in AppData, Google, Chrome, User Data, Local, and Local State, decrypts them and saves the passwords in a text file. Additionally, the RAT searches for Roblox security cookies (.ROBLOSECURITY) in Opera, Chrome, Edge, Chromium, Firefox and Brave, if found the cookies are stored in a text file and exfiltrated. A Roblox security cookie is a browser cookie that stores the users’ session and can be used to gain access to the Roblox account bypassing 2FA. 

Function to search for and exfiltrate Roblox security cookies
Figure 2: Function used to search for and exfiltrate Roblox security cookies
Function that gathers and exfiltrates system information 
Figure 3: Function that gathers and exfiltrates system information 
Secondary payload retrieved from DropBox 
Figure 4: Secondary payload retrieved from DropBox 

The Python script also contains code to create a VBScript and a BAT script which are executed with Powershell. The VBScript “updateagent.vbs” disables Windows Defender, creates backups and scheduled tasks for persistence and monitors specified processes. The BAT script “check.bat” retrieves a binary named “ProtonDrive.exe” from DropBox, stores it in a hidden folder and executes it with admin privileges. ProtonDrive is a pyinstaller compiled version of TritonRAT. Presumably the binary is retrieved to set up persistence. Once retrieved, ProtonDrive is stored in a created folder structure “C:\Users\user\AppData\Local\Programs\Proton\Drive”. Three scheduled tasks are created to start on logon of any user.

Tasks created
Figure 5: Three tasks created to start on logon of any user

For anti-analysis, Triton RAT contains a function that checks for “blacklisted” processes which include popular tools such as xdbg, ollydbg, FakeNet, and antivirus products. Additionally, the same Git user offers a file resizer as defense evasion as some anti-virus will not check a file over a certain amount of MB.  All the exfiltrated data is sent to Telegram via a Telegram bot, where the user can send commands to the affected machine. At the time of analysis, the Telegram channel/bot had 4549 messages, although it is unknown if these are indicative of the number of infections.  

Conclusion

The emergence of the Python-based Triton RAT highlights how quickly cybercriminals are evolving their tactics to target platforms with large user bases like Roblox. Its persistence mechanisms and reliance on Telegram for data exfiltration make it both resilient and easy for attackers to operate at scale. As threats like this continue to surface, it’s critical for organizations and individuals to reinforce endpoint protection, and promote strong credential security practices to reduce exposure to such attacks.

Indicators of compromise (IoCs)

ProtonDrive.exe

Ea04f1c4016383e0846aba71ac0b0c9c

Related samples:

076dccb222d0869870444fea760c7f2b564481faea80604c02abf74f1963c265

0975fdadbbd60d90afdcb5cc59ad58a22bfdb2c2b00a5da6bb1e09ae702b95e7

1f4e1aa937e81e517bccc3bd8a981553a2ef134c11471195f88f3799720eaa9c

200fdb4f94f93ec042a16a409df383afeedbbc73282ef3c30a91d5f521481f24

29d2a70eeedbe496515c71640771f1f9b71c4af5f5698e2068c6adcac28cc3e0

2b05494926b4b1c79ee0a12a4e7f6c07e04c084a953a4ba980ed7cb9b8bf6bc2

2d1b6bd0b945ddd8261efbd85851656a7351fd892be0fa62cc3346883a8f917e

2dce8fc1584e660a0cba4db2cacdf5ff705b1b3ba75611de0900ebaeaa420bf9

2f27b8987638b813285595762fa3e56fff2213086e9ba4439942cd470fa5669a

3f9ce4d12e0303faa59a307bcfc4366d02ba73e423dbf5bcf1da5178253db64d

4309e6a9abdfedc914df3393110a68bd4acfe922e9cd9f5f24abf23df7022af7

48231f2cf5bda35634fca2f98dc6e8581e8a65a2819d62bc375376fcd501ba2d

49b2ca4c1bd4405aa724ffaef266395be4b4581f1ff38b1fc092eab71e1adb6a

4b32dbd7a6ca7f91e75bacf055f4132be0952385d4d4fcbaf0970913876d64a1

566fc3f32633ce0b9a7154102bc1620a906473d5944dca8dea122cb63cb1bcaa

59793de10ed2d3684d0206f5f69cbebbba61d1f90a79dbd720d26bbf54226695

61a2c53390498716494ffa0b586aa6dc6c67baf03855845e2e3f2539f1f56563

6707ba64cccab61d3a658b23b28b232b1f601e3608b7d9e4767a1c0751bccd05

71fabe5022f613dc8e06d6dfda1327989e67be4e291f3761e84e3a988751caf8

78573a4c23f6ccdcbfce3a467fa93d2a1a49cf2f8dc7b595c0185e16b84828cb

78b246cbd9b1106d01659dd0ab65dc367486855b6b37869673bd98c560b6ff52

7bfdbceded56029bc32d89249e0195ebf47309fecded2b6578b035c52c43460b

7cb501e819fc98a55b9d19ad0f325084f6c4753785e30479502457ac7cb6289c

7fa70e18c414ae523e84c4a01d73e49f86ab816d129e8d7001fb778531adf3a7

8bc29a873b6144b6384a5535df5fc762c0c65e47a2caf0e845382c72f9d6671f

8c1db376bafcd071ffb59130d58ffcde45b2fa8e79dcc44c0a14574b9de55b43

a99ebd095d2ccda69855f2c700048658b8e425c90c916d5880f91c8aba634a2e

b656b7189925b043770a9738d8ae003d7401ac65a58e78c643937f4b44a3bc2c

b8dc2c5921f668f6cf8a355fd1cb79020b6752330be5e0db4bf96ae904d76249

b90af78927c6cb2d767f777d36031c9160aeb6fcd30090c3db3735b71274eb4e

bc1e211206c69fe399505e18380fb0068356d205c7929e2cb3d2fe0b4107d4e0

bf3c84a955f49c02a7f4fbf94dbbf089f26137fc75f5b36ac0b1bace9373d17a

c11d186e6d1600212565786ed481fbe401af598e1f689cf1ce6ff83b5a3b4371

cd42ae47c330c68cc8fd94cf5d91992f55992292b186991605b262ba1f776e8e

e1e2587ae2170d9c4533a6267f9179dff67d03f7adbb6d1fb4f43468d8f42c24

f389a8cbb88dae49559eaa572fc9288c253ed1825b1ce2a61e3d8ae998625e18

fc55895bb7d08e6ab770a05e55a037b533de809196f3019fbff0f1f58e688e5f

MITRE ATT&CK

T1053.005 Scheduled Task/Job: Scheduled Task

T1059.006 Command and Scripting Interpreter: Python

T1082 System Information Discovery

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1562.001 Impair Defenses: Disable or Modify Tools

T1132 Data Encoding

T1021 Remote Services

T1056.001 Input Capture: Keylogging

T1555 Credentials from Password Stores

T1539 Steal Web Session Cookie

T1546.015 Event Triggered Execution: Screensaver

T1113 Screen Capture

T1125 Video Capture

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1059 Command and Scripting Interpreter

T1115 Clipboard Data

T1497 Virtualization/Sandbox Evasion

T1020 Automated Exfiltration

YARA rule

rule Triton_RAT { 
   meta: 
       description = "Detects Python-based Triton RAT" 
       author = "tgould@cadosecurity.com" 
       date = "2025-03-06" 
   strings: 
       $telegram = "telebot.TeleBot" ascii 
       $extract_data = "def extract_data" ascii 
       $bot_token = "bot_token" ascii 
       $chat_id = "chat_id" ascii 
       $keylogger = "/keylogger" ascii 
       $stop_keylogger = "/stopkeylogger" ascii 
       $passwords = "/passwords" ascii 
       $clipboard = "/clipboard" ascii 
       $roblox_cookie = "/robloxcookie" ascii 
       $wifi_pass = "/wifipass" ascii 
       $sys_commands = "/(shutdown|restart|sleep|altf4|tasklist|taskkill|screenshot|mic|wallpaper|block|unblock)" ascii 
       $win_cmds = /(taskkill \/f \/im|wmic|schtasks \/create|attrib \+h|powershell\.exe -Command|reg add|netsh wlan show profile|net user|whoami|curl ipinfo\.io)/ ascii 
       $startup = "/addstartup" ascii 
       $winblocker = "/winblocker" ascii 
       $startup_scripts = /(C:\\Windows\\System32\\updateagent\.vbs|check\.bat|watchdog\.vbs)/ ascii 
   condition: 
       any of ($telegram, $extract_data, $bot_token, $chat_id) and 
       4 of ($keylogger, $stop_keylogger, $passwords, $clipboard, $roblox_cookie, $wifi_pass, 
             $sys_commands, $win_cmds, $startup, $winblocker, $startup_scripts) 
} 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

October 14, 2025

Inside Akira’s SonicWall Campaign: Darktrace’s Detection and Response

akira sonicwallDefault blog imageDefault blog image

Introduction: Background on Akira SonicWall campaign

Between July and August 2025, security teams worldwide observed a surge in Akira ransomware incidents involving SonicWall SSL VPN devices [1]. Initially believed to be the result of an unknown zero-day vulnerability, SonicWall later released an advisory announcing that the activity was strongly linked to a previously disclosed vulnerability, CVE-2024-40766, first identified over a year earlier [2].

On August 20, 2025, Darktrace observed unusual activity on the network of a customer in the US. Darktrace detected a range of suspicious activity, including network scanning and reconnaissance, lateral movement, privilege escalation, and data exfiltration. One of the compromised devices was later identified as a SonicWall virtual private network (VPN) server, suggesting that the incident was part of the broader Akira ransomware campaign targeting SonicWall technology.

As the customer was subscribed to the Managed Detection and Response (MDR) service, Darktrace’s Security Operations Centre (SOC) team was able to rapidly triage critical alerts, restrict the activity of affected devices, and notify the customer of the threat. As a result, the impact of the attack was limited - approximately 2 GiB of data had been observed leaving the network, but any further escalation of malicious activity was stopped.

Threat Overview

CVE-2024-40766 and other misconfigurations

CVE-2024-40766 is an improper access control vulnerability in SonicWall’s SonicOS, affecting Gen 5, Gen 6, and Gen 7 devices running SonicOS version 7.0.1 5035 and earlier [3]. The vulnerability was disclosed on August 23, 2024, with a patch released the same day. Shortly after, it was reported to be exploited in the wild by Akira ransomware affiliates and others [4].

Almost a year later, the same vulnerability is being actively targeted again by the Akira ransomware group. In addition to exploiting unpatched devices affected by CVE-2024-40766, security researchers have identified three other risks potentially being leveraged by the group [5]:

*The Virtual Office Portal can be used to initially set up MFA/TOTP configurations for SSLVPN users.

Thus, even if SonicWall devices were patched, threat actors could still target them for initial access by reusing previously stolen credentials and exploiting other misconfigurations.

Akira Ransomware

Akira ransomware was first observed in the wild in March 2023 and has since become one of the most prolific ransomware strains across the threat landscape [6]. The group operates under a Ransomware-as-a-Service (RaaS) model and frequently uses double extortion tactics, pressuring victims to pay not only to decrypt files but also to prevent the public release of sensitive exfiltrated data.

The ransomware initially targeted Windows systems, but a Linux variant was later observed targeting VMware ESXi virtual machines [7]. In 2024, it was assessed that Akira would continue to target ESXi hypervisors, making attacks highly disruptive due to the central role of virtualisation in large-scale cloud deployments. Encrypting the ESXi file system enables rapid and widespread encryption with minimal lateral movement or credential theft. The lack of comprehensive security protections on many ESXi hypervisors also makes them an attractive target for ransomware operators [8].

Victimology

Akira is known to target organizations across multiple sectors, most notably those in manufacturing, education, and healthcare. These targets span multiple geographic regions, including North America, Latin America, Europe and Asia-Pacific [9].

Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].
Figure 1: Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].

Common Tactics, Techniques and Procedures (TTPs) [7][10]

Initial Access
Targets remote access services such as RDP and VPN through vulnerability exploitation or stolen credentials.

Reconnaissance
Uses network scanning tools like SoftPerfect and Advanced IP Scanner to map the environment and identify targets.

Lateral Movement
Moves laterally using legitimate administrative tools, typically via RDP.

Persistence
Employs techniques such as Kerberoasting and pass-the-hash, and tools like Mimikatz to extract credentials. Known to create new domain accounts to maintain access.

Command and Control
Utilizes remote access tools including AnyDesk, RustDesk, Ngrok, and Cloudflare Tunnel.

Exfiltration
Uses tools such as FileZilla, WinRAR, WinSCP, and Rclone. Data is exfiltrated via protocols like FTP and SFTP, or through cloud storage services such as Mega.

Darktrace’s Coverage of Akira ransomware

Reconnaissance

Darktrace first detected of unusual network activity around 05:10 UTC, when a desktop device was observed performing a network scan and making an unusual number of DCE-RPC requests to the endpoint mapper (epmapper) service. Network scans are typically used to identify open ports, while querying the epmapper service can reveal exposed RPC services on the network.

Multiple other devices were also later seen with similar reconnaissance activity, and use of the Advanced IP Scanner tool, indicated by connections to the domain advanced-ip-scanner[.]com.

Lateral movement

Shortly after the initial reconnaissance, the same desktop device exhibited unusual use of administrative tools. Darktrace observed the user agent “Ruby WinRM Client” and the URI “/wsman” as the device initiated a rare outbound Windows Remote Management (WinRM) connection to two domain controllers (REDACTED-dc1 and REDACTED-dc2). WinRM is a Microsoft service that uses the WS-Management (WSMan) protocol to enable remote management and control of network devices.

Darktrace also observed the desktop device connecting to an ESXi device (REDACTED-esxi1) via RDP using an LDAP service credential, likely with administrative privileges.

Credential access

At around 06:26 UTC, the desktop device was seen fetching an Active Directory certificate from the domain controller (REDACTED-dc1) by making a DCE-RPC request to the ICertPassage service. Shortly after, the device made a Kerberos login using the administrative credential.

Figure 3: Darktrace’s detection of the of anomalous certificate download and subsequent Kerberos login.

Further investigation into the device’s event logs revealed a chain of connections that Darktrace’s researchers believe demonstrates a credential access technique known as “UnPAC the hash.”

This method begins with pre-authentication using Kerberos’ Public Key Cryptography for Initial Authentication (PKINIT), allowing the client to use an X.509 certificate to obtain a Ticket Granting Ticket (TGT) from the Key Distribution Center (KDC) instead of a password.

The next stage involves User-to-User (U2U) authentication when requesting a Service Ticket (ST) from the KDC. Within Darktrace's visibility of this traffic, U2U was indicated by the client and service principal names within the ST request being identical. Because PKINIT was used earlier, the returned ST contains the NTLM hash of the credential, which can then be extracted and abused for lateral movement or privilege escalation [11].

Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12].
Figure 4: Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12]
Figure 5: Device event log showing the Kerberos Login and Kerberos Ticket events

Analysis of the desktop device’s event logs revealed a repeated sequence of suspicious activity across multiple credentials. Each sequence included a DCE-RPC ICertPassage request to download a certificate, followed by a Kerberos login event indicating PKINIT pre-authentication, and then a Kerberos ticket event consistent with User-to-User (U2U) authentication.

Darktrace identified this pattern as highly unusual. Cyber AI Analyst determined that the device used at least 15 different credentials for Kerberos logins over the course of the attack.

By compromising multiple credentials, the threat actor likely aimed to escalate privileges and facilitate further malicious activity, including lateral movement. One of the credentials obtained via the “UnPAC the hash” technique was later observed being used in an RDP session to the domain controller (REDACTED-dc2).

C2 / Additional tooling

At 06:44 UTC, the domain controller (REDACTED-dc2) was observed initiating a connection to temp[.]sh, a temporary cloud hosting service. Open-source intelligence (OSINT) reporting indicates that this service is commonly used by threat actors to host and distribute malicious payloads, including ransomware [13].

Shortly afterward, the ESXi device was observed downloading an executable named “vmwaretools” from the rare external endpoint 137.184.243[.]69, using the user agent “Wget.” The repeated outbound connections to this IP suggest potential command-and-control (C2) activity.

Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Figure 6: Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.
Figure 7: Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.

Data exfiltration

The first signs of data exfiltration were observed at around 7:00 UTC. Both the domain controller (REDACTED-dc2) and a likely SonicWall VPN device were seen uploading approximately 2 GB of data via SSH to the rare external endpoint 66.165.243[.]39 (AS29802 HVC-AS). OSINT sources have since identified this IP as an indicator of compromise (IoC) associated with the Akira ransomware group, known to use it for data exfiltration [14].

Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.
Figure 8: Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.

Cyber AI Analyst

Throughout the course of the attack, Darktrace’s Cyber AI Analyst autonomously investigated the anomalous activity as it unfolded and correlated related events into a single, cohesive incident. Rather than treating each alert as isolated, Cyber AI Analyst linked them together to reveal the broader narrative of compromise. This holistic view enabled the customer to understand the full scope of the attack, including all associated activities and affected assets that might otherwise have been dismissed as unrelated.

Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.
Figure 9: Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.

Containing the attack

In response to the multiple anomalous activities observed across the network, Darktrace's Autonomous Response initiated targeted mitigation actions to contain the attack. These included:

  • Blocking connections to known malicious or rare external endpoints, such as 137.184.243[.]69, 66.165.243[.]39, and advanced-ip-scanner[.]com.
  • Blocking internal traffic to sensitive ports, including 88 (Kerberos), 3389 (RDP), and 49339 (DCE-RPC), to disrupt lateral movement and credential abuse.
  • Enforcing a block on all outgoing connections from affected devices to contain potential data exfiltration and C2 activity.
Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.
Figure 10: Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.

Managed Detection and Response

As this customer was an MDR subscriber, multiple Enhanced Monitoring alerts—high-fidelity models designed to detect activity indicative of compromise—were triggered across the network. These alerts prompted immediate investigation by Darktrace’s SOC team.

Upon determining that the activity was likely linked to an Akira ransomware attack, Darktrace analysts swiftly acted to contain the threat. At around 08:05 UTC, devices suspected of being compromised were quarantined, and the customer was promptly notified, enabling them to begin their own remediation procedures without delay.

A wider campaign?

Darktrace’s SOC and Threat Research teams identified at least three additional incidents likely linked to the same campaign. All targeted organizations were based in the US, spanning various industries, and each have indications of using SonicWall VPN, indicating it had likely been targeted for initial access.

Across these incidents, similar patterns emerged. In each case, a suspicious executable named “vmwaretools” was downloaded from the endpoint 85.239.52[.]96 using the user agent “Wget”, bearing some resemblance to the file downloads seen in the incident described here. Data exfiltration was also observed via SSH to the endpoints 107.155.69[.]42 and 107.155.93[.]154, both of which belong to the same ASN also seen in the incident described in this blog: S29802 HVC-AS. Notably, 107.155.93[.]154 has been reported in OSINT as an indicator associated with Akira ransomware activity [15]. Further recent Akira ransomware cases have been observed involving SonicWall VPN, where no similar executable file downloads were observed, but SSH exfiltration to the same ASN was. These overlapping and non-overlapping TTPs may reflect the blurring lines between different affiliates operating under the same RaaS.

Lessons from the campaign

This campaign by Akira ransomware actors underscores the critical importance of maintaining up-to-date patching practices. Threat actors continue to exploit previously disclosed vulnerabilities, not just zero-days, highlighting the need for ongoing vigilance even after patches are released. It also demonstrates how misconfigurations and overlooked weaknesses can be leveraged for initial access or privilege escalation, even in otherwise well-maintained environments.

Darktrace’s observations further reveal that ransomware actors are increasingly relying on legitimate administrative tools, such as WinRM, to blend in with normal network activity and evade detection. In addition to previously documented Kerberos-based credential access techniques like Kerberoasting and pass-the-hash, this campaign featured the use of UnPAC the hash to extract NTLM hashes via PKINIT and U2U authentication for lateral movement or privilege escalation.

Credit to Emily Megan Lim (Senior Cyber Analyst), Vivek Rajan (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), and Sam Lister (Specialist Security Researcher)

Appendices

Darktrace Model Detections

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Possible Data Staging and External Upload

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Rare WinRM Outgoing

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Unusual Incoming Long Remote Desktop Session

Anomalous Connection / Unusual Incoming Long SSH Session

Anomalous Connection / Unusual Long SSH Session

Anomalous File / EXE from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Server Activity / Outgoing from Server

Anomalous Server Activity / Rare External from Server

Compliance / Default Credential Usage

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compliance / SSH to Rare External Destination

Compromise / Large Number of Suspicious Successful Connections

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Anomalous Certificate Download Activity

Device / Anomalous SSH Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Large Number of Model Alerts

Device / Network Range Scan

Device / Network Scan

Device / New User Agent To Internal Server

Device / Possible SMB/NTLM Brute Force

Device / Possible SMB/NTLM Reconnaissance

Device / RDP Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / UDP Enumeration

Unusual Activity / Unusual External Data to New Endpoint

Unusual Activity / Unusual External Data Transfer

User / Multiple Uncommon New Credentials on Device

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Enhanced Monitoring Models

Compromise / Anomalous Certificate Download and Kerberos Login

Device / Initial Attack Chain Activity

Device / Large Number of Model Alerts from Critical Network Device

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious Network Scan Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Antigena/Autonomous Response Models

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block

Antigena / Network / Manual / Quarantine Device

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Repeated Antigena Alerts

List of Indicators of Compromise (IoCs)

·      66.165.243[.]39 – IP Address – Data exfiltration endpoint

·      107.155.69[.]42 – IP Address – Probable data exfiltration endpoint

·      107.155.93[.]154 – IP Address – Likely Data exfiltration endpoint

·      137.184.126[.]86 – IP Address – Possible C2 endpoint

·      85.239.52[.]96 – IP Address – Likely C2 endpoint

·      hxxp://85.239.52[.]96:8000/vmwarecli  – URL – File download

·      hxxp://137.184.126[.]86:8080/vmwaretools – URL – File download

MITRE ATT&CK Mapping

Initial Access – T1190 – Exploit Public-Facing Application

Reconnaissance – T1590.002 – Gather Victim Network Information: DNS

Reconnaissance – T1590.005 – Gather Victim Network Information: IP Addresses

Reconnaissance – T1592.004 – Gather Victim Host Information: Client Configurations

Reconnaissance – T1595 – Active Scanning

Discovery – T1018 – Remote System Discovery

Discovery – T1046 – Network Service Discovery

Discovery – T1083 – File and Directory Discovery

Discovery – T1135 – Network Share Discovery

Lateral Movement – T1021.001 – Remote Services: Remote Desktop Protocol

Lateral Movement – T1021.004 – Remote Services: SSH

Lateral Movement – T1021.006 – Remote Services: Windows Remote Management

Lateral Movement – T1550.002 – Use Alternate Authentication Material: Pass the Hash

Lateral Movement – T1550.003 – Use Alternate Authentication Material: Pass the Ticket

Credential Access – T1110.001 – Brute Force: Password Guessing

Credential Access – T1649 – Steal or Forge Authentication Certificates

Persistence, Privilege Escalation – T1078 – Valid Accounts

Resource Development – T1588.001 – Obtain Capabilities: Malware

Command and Control – T1071.001 – Application Layer Protocol: Web Protocols

Command and Control – T1105 – Ingress Tool Transfer

Command and Control – T1573 – Encrypted Channel

Collection – T1074 – Data Staged

Exfiltration – T1041 – Exfiltration Over C2 Channel

Exfiltration – T1048 – Exfiltration Over Alternative Protocol

References

[1] https://thehackernews.com/2025/08/sonicwall-investigating-potential-ssl.html

[2] https://www.sonicwall.com/support/notices/gen-7-and-newer-sonicwall-firewalls-sslvpn-recent-threat-activity/250804095336430

[3] https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2024-0015

[4] https://arcticwolf.com/resources/blog/arctic-wolf-observes-akira-ransomware-campaign-targeting-sonicwall-sslvpn-accounts/

[5] https://www.rapid7.com/blog/post/dr-akira-ransomware-group-utilizing-sonicwall-devices-for-initial-access/

[6] https://www.ic3.gov/AnnualReport/Reports/2024_IC3Report.pdf

[7] https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-109a

[8] https://blog.talosintelligence.com/akira-ransomware-continues-to-evolve/

[9] https://www.ransomware.live/map?year=2025&q=akira

[10] https://attack.mitre.org/groups/G1024/
[11] https://labs.lares.com/fear-kerberos-pt2/#UNPAC

[12] https://www.thehacker.recipes/ad/movement/kerberos/unpac-the-hash

[13] https://www.s-rminform.com/latest-thinking/derailing-akira-cyber-threat-intelligence)

[14] https://fieldeffect.com/blog/update-akira-ransomware-group-targets-sonicwall-vpn-appliances

[15] https://arcticwolf.com/resources/blog/arctic-wolf-observes-july-2025-uptick-in-akira-ransomware-activity-targeting-sonicwall-ssl-vpn/

Continue reading
About the author
Emily Megan Lim
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI