ブログ
/
/
March 27, 2025

Python-based Triton RAT Targeting Roblox Credentials

Cado Security Labs (now part of Darktrace) identified Triton RAT, a Python-based open-source tool controlled via Telegram.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Mar 2025

Introduction

Researchers from Cado Security Labs (now part of Darktrace) have identified a Python Remote Access Tool (RAT) named Triton RAT. The open-source RAT is available on GitHub and allows users to remotely access and control a system using Telegram. 

Technical analysis

In the version of the Triton RAT Pastebin. 

Telegram token and chat ID encoded in Base64
Figure 1: Telegram token and chat ID encoded in Base64

Features of Triton RAT:

  • Keylogging
  • Remote commands
  • Steal saved passwords
  • Steal Roblox security cookies
  • Change wallpaper
  • Screen recording
  • Webcam access
  • Gather Wifi Information
  • Download/upload file
  • Execute shell commands
  • Steal clipboard data
  • Anti-Analysis
  • Gather system information
  • Data exfiltrated to Telegram Bot

The TritonRAT code contains many functions including the function “sendmessage” which iterates over password stores in AppData, Google, Chrome, User Data, Local, and Local State, decrypts them and saves the passwords in a text file. Additionally, the RAT searches for Roblox security cookies (.ROBLOSECURITY) in Opera, Chrome, Edge, Chromium, Firefox and Brave, if found the cookies are stored in a text file and exfiltrated. A Roblox security cookie is a browser cookie that stores the users’ session and can be used to gain access to the Roblox account bypassing 2FA. 

Function to search for and exfiltrate Roblox security cookies
Figure 2: Function used to search for and exfiltrate Roblox security cookies
Function that gathers and exfiltrates system information 
Figure 3: Function that gathers and exfiltrates system information 
Secondary payload retrieved from DropBox 
Figure 4: Secondary payload retrieved from DropBox 

The Python script also contains code to create a VBScript and a BAT script which are executed with Powershell. The VBScript “updateagent.vbs” disables Windows Defender, creates backups and scheduled tasks for persistence and monitors specified processes. The BAT script “check.bat” retrieves a binary named “ProtonDrive.exe” from DropBox, stores it in a hidden folder and executes it with admin privileges. ProtonDrive is a pyinstaller compiled version of TritonRAT. Presumably the binary is retrieved to set up persistence. Once retrieved, ProtonDrive is stored in a created folder structure “C:\Users\user\AppData\Local\Programs\Proton\Drive”. Three scheduled tasks are created to start on logon of any user.

Tasks created
Figure 5: Three tasks created to start on logon of any user

For anti-analysis, Triton RAT contains a function that checks for “blacklisted” processes which include popular tools such as xdbg, ollydbg, FakeNet, and antivirus products. Additionally, the same Git user offers a file resizer as defense evasion as some anti-virus will not check a file over a certain amount of MB.  All the exfiltrated data is sent to Telegram via a Telegram bot, where the user can send commands to the affected machine. At the time of analysis, the Telegram channel/bot had 4549 messages, although it is unknown if these are indicative of the number of infections.  

Conclusion

The emergence of the Python-based Triton RAT highlights how quickly cybercriminals are evolving their tactics to target platforms with large user bases like Roblox. Its persistence mechanisms and reliance on Telegram for data exfiltration make it both resilient and easy for attackers to operate at scale. As threats like this continue to surface, it’s critical for organizations and individuals to reinforce endpoint protection, and promote strong credential security practices to reduce exposure to such attacks.

Indicators of compromise (IoCs)

ProtonDrive.exe

Ea04f1c4016383e0846aba71ac0b0c9c

Related samples:

076dccb222d0869870444fea760c7f2b564481faea80604c02abf74f1963c265

0975fdadbbd60d90afdcb5cc59ad58a22bfdb2c2b00a5da6bb1e09ae702b95e7

1f4e1aa937e81e517bccc3bd8a981553a2ef134c11471195f88f3799720eaa9c

200fdb4f94f93ec042a16a409df383afeedbbc73282ef3c30a91d5f521481f24

29d2a70eeedbe496515c71640771f1f9b71c4af5f5698e2068c6adcac28cc3e0

2b05494926b4b1c79ee0a12a4e7f6c07e04c084a953a4ba980ed7cb9b8bf6bc2

2d1b6bd0b945ddd8261efbd85851656a7351fd892be0fa62cc3346883a8f917e

2dce8fc1584e660a0cba4db2cacdf5ff705b1b3ba75611de0900ebaeaa420bf9

2f27b8987638b813285595762fa3e56fff2213086e9ba4439942cd470fa5669a

3f9ce4d12e0303faa59a307bcfc4366d02ba73e423dbf5bcf1da5178253db64d

4309e6a9abdfedc914df3393110a68bd4acfe922e9cd9f5f24abf23df7022af7

48231f2cf5bda35634fca2f98dc6e8581e8a65a2819d62bc375376fcd501ba2d

49b2ca4c1bd4405aa724ffaef266395be4b4581f1ff38b1fc092eab71e1adb6a

4b32dbd7a6ca7f91e75bacf055f4132be0952385d4d4fcbaf0970913876d64a1

566fc3f32633ce0b9a7154102bc1620a906473d5944dca8dea122cb63cb1bcaa

59793de10ed2d3684d0206f5f69cbebbba61d1f90a79dbd720d26bbf54226695

61a2c53390498716494ffa0b586aa6dc6c67baf03855845e2e3f2539f1f56563

6707ba64cccab61d3a658b23b28b232b1f601e3608b7d9e4767a1c0751bccd05

71fabe5022f613dc8e06d6dfda1327989e67be4e291f3761e84e3a988751caf8

78573a4c23f6ccdcbfce3a467fa93d2a1a49cf2f8dc7b595c0185e16b84828cb

78b246cbd9b1106d01659dd0ab65dc367486855b6b37869673bd98c560b6ff52

7bfdbceded56029bc32d89249e0195ebf47309fecded2b6578b035c52c43460b

7cb501e819fc98a55b9d19ad0f325084f6c4753785e30479502457ac7cb6289c

7fa70e18c414ae523e84c4a01d73e49f86ab816d129e8d7001fb778531adf3a7

8bc29a873b6144b6384a5535df5fc762c0c65e47a2caf0e845382c72f9d6671f

8c1db376bafcd071ffb59130d58ffcde45b2fa8e79dcc44c0a14574b9de55b43

a99ebd095d2ccda69855f2c700048658b8e425c90c916d5880f91c8aba634a2e

b656b7189925b043770a9738d8ae003d7401ac65a58e78c643937f4b44a3bc2c

b8dc2c5921f668f6cf8a355fd1cb79020b6752330be5e0db4bf96ae904d76249

b90af78927c6cb2d767f777d36031c9160aeb6fcd30090c3db3735b71274eb4e

bc1e211206c69fe399505e18380fb0068356d205c7929e2cb3d2fe0b4107d4e0

bf3c84a955f49c02a7f4fbf94dbbf089f26137fc75f5b36ac0b1bace9373d17a

c11d186e6d1600212565786ed481fbe401af598e1f689cf1ce6ff83b5a3b4371

cd42ae47c330c68cc8fd94cf5d91992f55992292b186991605b262ba1f776e8e

e1e2587ae2170d9c4533a6267f9179dff67d03f7adbb6d1fb4f43468d8f42c24

f389a8cbb88dae49559eaa572fc9288c253ed1825b1ce2a61e3d8ae998625e18

fc55895bb7d08e6ab770a05e55a037b533de809196f3019fbff0f1f58e688e5f

MITRE ATT&CK

T1053.005 Scheduled Task/Job: Scheduled Task

T1059.006 Command and Scripting Interpreter: Python

T1082 System Information Discovery

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1562.001 Impair Defenses: Disable or Modify Tools

T1132 Data Encoding

T1021 Remote Services

T1056.001 Input Capture: Keylogging

T1555 Credentials from Password Stores

T1539 Steal Web Session Cookie

T1546.015 Event Triggered Execution: Screensaver

T1113 Screen Capture

T1125 Video Capture

T1016 System Network Configuration Discovery

T1105 Ingress Tool Transfer

T1059 Command and Scripting Interpreter

T1115 Clipboard Data

T1497 Virtualization/Sandbox Evasion

T1020 Automated Exfiltration

YARA rule

rule Triton_RAT { 
   meta: 
       description = "Detects Python-based Triton RAT" 
       author = "tgould@cadosecurity.com" 
       date = "2025-03-06" 
   strings: 
       $telegram = "telebot.TeleBot" ascii 
       $extract_data = "def extract_data" ascii 
       $bot_token = "bot_token" ascii 
       $chat_id = "chat_id" ascii 
       $keylogger = "/keylogger" ascii 
       $stop_keylogger = "/stopkeylogger" ascii 
       $passwords = "/passwords" ascii 
       $clipboard = "/clipboard" ascii 
       $roblox_cookie = "/robloxcookie" ascii 
       $wifi_pass = "/wifipass" ascii 
       $sys_commands = "/(shutdown|restart|sleep|altf4|tasklist|taskkill|screenshot|mic|wallpaper|block|unblock)" ascii 
       $win_cmds = /(taskkill \/f \/im|wmic|schtasks \/create|attrib \+h|powershell\.exe -Command|reg add|netsh wlan show profile|net user|whoami|curl ipinfo\.io)/ ascii 
       $startup = "/addstartup" ascii 
       $winblocker = "/winblocker" ascii 
       $startup_scripts = /(C:\\Windows\\System32\\updateagent\.vbs|check\.bat|watchdog\.vbs)/ ascii 
   condition: 
       any of ($telegram, $extract_data, $bot_token, $chat_id) and 
       4 of ($keylogger, $stop_keylogger, $passwords, $clipboard, $roblox_cookie, $wifi_pass, 
             $sys_commands, $win_cmds, $startup, $winblocker, $startup_scripts) 
} 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

Default blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

Default blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI