Blog
/
Network
/
February 6, 2025

RansomHub Revisited: New Front-Runner in the Ransomware-as-a-Service Marketplace

Discover how RansomHub is rising in the ransomware landscape, using tools like Atera and Splashtop, reconnaissance tactics, and double extortion techniques.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2025

In a previous Inside the SOC blog, Darktrace investigated RansomHub and its growing impact on the threat landscape due to its use by the ShadowSyndicate threat group. Here, RansomHub is revisited with new insights on this ransomware-as-a-service (RaaS) platform that has rapidly gained traction among threat actors of late.

In recent months, Darktrace’s Threat Research team has noted a significant uptick in potential compromises affecting the fleet, indicating that RansomHub is becoming a preferred tool for cybercriminals.  This article delves into the increasing adoption of RansomHub, the tactics, techniques, and procedures (TTPs) employed by its affiliates, and the broader implications for organizations striving to protect their systems.

RansomHub overview & background

One notable threat group to have transitioned from ALPHV (BlackCat)-aligned operations to RansomHub-aligned operations is ScatteredSpider [1]. The adoption of RansomHub by ScatteredSpider and other threat actors suggests a possible power shift among threat groups, given the increasing number of cybercriminals adopting it, including those who previously relied on ALPHV’s malware code [2].

ALPHV was a RaaS strain used by cybercriminals to breach Change Healthcare in February 2024 [2]. However, there are claims that the ransom payment never reached the affiliate using ALPHV, leading to a loss of trust in the RaaS. Around the same time, Operation Cronos resulted in the shutdown of LockBit and the abandonment of its affiliates [2]. Consequently, RansomHub emerged as a prominent RaaS successor.

RansomHub targets

The RansomHub ransomware group has been observed targeting various sectors, including critical infrastructure, financial and government services, and the healthcare sector [4]. They use ransomware variants rewritten in GoLang to target both Windows and Linux systems [5]. RansomHub is known for employing double extortion attacks, encrypting data using “Curve25519” encryption [6].

RansomHub tactics and techniques

The attackers leverage phishing attacks and social engineering techniques to lure their victims. Once access is gained, they use sophisticated tools to maintain control over compromised networks and exploit vulnerabilities in systems like Windows, Linux, ESXI, and NAS.

In more recent RansomHub attacks, tools such as Atera and Splashtop have been used to facilitate remote access, while NetScan has been employed to discover and retrieve information about network devices [7].

External researchers have observed that RansomHub uses several legitimate tools, or a tactic known as Living-off-the-Land (LOTL), to carry out their attacks. These tools include:

  • SecretServerSecretStealer: A PowerShell script that allows for the decryption of passwords [1].
  • Ngrok: A legitimate reverse proxy tool that creates a secure tunnel to servers located behind firewalls, used by the group for lateral movement and data exfiltration.
  • Remmina: An open-source remote desktop client for POSIX-based operating systems, enabling threat actors to access remote services [1].

By using these legitimate tools instead of traditional malware, RansomHub can avoid detection and maintain a lower profile during their operations.

Darktrace’s Coverage of RansomHub

Darktrace’s Security Operations Center (SOC) detected several notable cases of likely RansomHub activity across the customer base in recent months. In all instances, threat actors performed network scanning and brute force activities.

During the investigation of a confirmed RansomHub attack in January 2025, the Darktrace Threat Research team identified multiple authentication attempts as attackers tried to retrieve valid credentials. It is plausible that the attackers gained entry to customer environments through their Remote Desktop (RD) web server. Following this, various RDP connections were made to pivot to other devices within the network.

The common element among the cases investigated was that, in most instances, devices were seen performing outgoing connections to splashtop[.]com, a remote access and support software service, after the scanning activity had occurred. On one customer network, following this activity, the same device was seen connecting to the domain agent-api[.]atera[.]com and IP 20.37.139[.]187, which are seemingly linked to Atera, a Remote Monitoring and Management (RMM) tool.

Model Alert Log of an affected device making connections to *atera[.]com.
Figure 1: Model Alert Log of an affected device making connections to *atera[.]com.

In a separate case, a Darktrace observed a device attempting to perform SMB scanning activity, trying to connect to multiple internal devices over port 445. Cyber AI Analyst was able to detect and correlate these individual connections into a single reconnaissance incident.

Similar connections to Remote Monitoring and Management (RMM) tools were also detected in a different customer environment, as alerted by Darktrace’s SOC. Unusual connections to Splashtop and Atera were made from the alerted device. Following this, the same device was observed sending a large volume of data over SSH Rclone to a rare external endpoint on the unusual port 448, triggered multiple models in Darktrace / NETWORK.

Advanced Search graph demonstrating the rarity of the  external IP 38.244.145[.]85  used for data exfiltration.
Figure 2: Advanced Search graph demonstrating the rarity of the  external IP 38.244.145[.]85  used for data exfiltration.
Model Alert Log displaying information related to the suspicious IP, including the port used and its rarity for the network.
Figure 3: Model Alert Log displaying information related to the suspicious IP, including the port used and its rarity for the network.

In the cases observed, data exfiltration occurred alongside the encryption of files likely indicating double extortion tactics. In September 2024, the Darktrace’s Threat Research team identified a 6-digit alphanumeric additional extension similar to “.293ac3”. This case was closely linked to a RansomHub attack, which was also analyzed in a different blog post by Darktrace [8].

Event Log displaying the extension “.293ac3” being appended to encrypted files on an affected customer network.
Figure 4: Event Log displaying the extension “.293ac3” being appended to encrypted files on an affected customer network.

Conclusion

RansomHub exemplifies the evolving RaaS ecosystem, where threat actors capitalize on ready-made platforms to launch sophisticated attacks with ease. The activities observed highlight its growing popularity among cybercriminals. The analysis showed that the different attacks investigated followed a similar pattern of activity.

First, attackers perform reconnaissance activities, including widespread scanning from multiple devices and reverse DNS sweeps. They then use high-privileged credentials to pivot among devices and establish remote connections using RMM tools such as Atera. A common element among most attacks that reached the data encryption stage is the use of a 6-digit alphanumeric extension.

In all cases, Darktrace alerted on the unusual activities observed, creating not only model alerts but also Cyber AI Analyst incidents. Both Darktrace Security Operations Support and Darktrace Managed Threat Detection services provided 24/7 assistance to clients affected by RansomHub. The analyst team continued investigating these incidents, gathering data and IoCs seen in the RansomHub incidents, providing valuable insight and guidance throughout the process.

As RansomHub continues to gain traction, it serves as a stark reminder of the need for robust cybersecurity measures, proactive threat intelligence, and continued vigilance.

Credit to Maria Geronikolou (Cyber Analyst) and Nahisha Nobregas (Senior Cyber Analyst)

[related-resource]

Appendices

Darktrace Model Detections

Network Reconnaissance

o   Device / Network Scan

o   Device / ICMP Address Scan

o   Device / RDP Scan

o   Device / Anomalous LDAP Root Searches

o   Anomalous Connection / SMB Enumeration

o   Device / Spike in LDAP Activity

o   Device / Suspicious Network Scan Activity

Lateral Movement

o   Device / Multiple Lateral Movement Model Alerts

o   Device / Increase in New RPC Services

o   Device / New or Uncommon WMI Activity

o   Device / Possible SMB/NTLM Brute Force

o   Device / SMB Session Brute Force (Non-Admin)

o   Device / Anomalous NTLM Brute Force

o   Compliance / Default Credential Usage

o   Compliance / Outgoing NTLM Request from DC

C2 Activity

o   Anomalous Server Activity / Outgoing from Server

o   Anomalous Connection / Multiple Connections to New External TCP Port

o   Unusual Activity / Unusual External Activity

o   Compliance / Remote Management Tool On Server

Data Exfiltration

o   Unusual Activity / Enhanced Unusual External Data Transfer

o   Anomalous Connection / Outbound SSH to Unusual Port

o   Compliance / SSH to Rare External Destination

o   Unusual Activity / Unusual External Data to New Endpoint

o   Unusual Activity / Unusual External Data Transfer

o   Attack Path Modelling / Unusual Data Transfer on Critical Attack Path

o   Compliance / Possible Unencrypted Password File On Server

Autonomous Response Models

-       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

-       Antigena/Network/Insider Threat/Antigena SMB Enumeration Block

-       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

-       Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

List of Indicators of Compromise (IoCs)

o   38.244.145[.]85

o   20.37.139[.]187 agent-api.atera[.]com

o   108.157.150[.]120 ps.atera[.]com

o   st-v3-univ-srs-win-3720[.]api[.]splashtop[.]com

MITRE ATT&CK Mapping

  • RECONNAISSANCE T1592.004
  • RECONNAISSANCE T1595.002
  • DISCOVERY T1046
  • DISCOVERY T1083
  • DISCOVERY T1135
  • DISCOVERY T1018
  • INITIAL ACCESS T1190
  • CREDENTIAL ACCESS T1110
  • LATERAL MOVEMENT T1210
  • COMMAND AND CONTROL T1001
  • EXFILTRATION T1041
  • EXFILTRATION T1567.002

References

[1] https://www.guidepointsecurity.com/blog/worldwide-web-an-analysis-of-tactics-and-techniques-attributed-to-scattered-spider/

[2] https://www.theregister.com/2024/07/16/scattered_spider_ransom/

[3] https://krebsonsecurity.com/2024/03/blackcat-ransomware-group-implodes-after-apparent-22m-ransom-payment-by-change-healthcare/

[4] https://thehackernews.com/2024/09/ransomhub-ransomware-group-targets-210.html

[5] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-ransomhub

[6] https://areteir.com/article/malware-spotlight-ransomhub-ransomware/
[7] https://www.security.com/threat-intelligence/ransomhub-knight-ransomware

[8] https://darktrace.com/blog/ransomhub-ransomware-darktraces-investigation-of-the-newest-tool-in-shadowsyndicates-arsenal

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Maria Geronikolou
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI