Blog
/
/
March 29, 2022

NJ State Bar Moves Towards Business-Wide Autonomous Security

See how the New Jersey State Bar Association adopted Darktrace’s Autonomous Response technology across and stopped a sophisticated SaaS attack. Read more.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dr Robert Spangler
Associate Executive Director of the New Jersey State Bar Association
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Mar 2022

The New Jersey State Bar Association supports more than 18,000 attorneys, judges and legislators in the metropolitan New York City region. From an IT security perspective, our primary goals are to protect the sensitive data of our employees and members, and minimize the disruption to our business caused by cyber-threats.

Over the past few years, our team has become increasingly concerned about the terrifying pace at which the threat landscape is evolving. We’ve seen escalating ransomware attacks, we’ve seen attackers targeting the supply chain and exploiting SaaS platforms like Microsoft 365 and Salesforce. We see new vulnerabilities coming out all the time. On the email side, we see evolving attack techniques, with malicious links hidden in documents so that an email bypasses the first line of defense, or lateral movement against calendar invites.

The pace of attacker innovation tells us one thing: we can’t just protect ourselves against the threats that we know about; we must also prepare for those we don’t know about. What might sound like a paradox is actually achievable with the right approach.

This was one of the factors that drew us to Darktrace two years ago: its ability to learn what’s ‘normal’ for our organization and detect anomalies that indicate a cyber-threat. And it wasn’t long into the deployment that this started to yield strong results, shining a light on new vulnerabilities and activity we didn’t previously know about.

But the other major factor in that purchasing decision was Darktrace’s Autonomous Response capability. Cyber-attacks are no longer controlled by a human from start to finish. Attackers are adopting automation and machine learning to scale up and launch faster and more damaging campaigns.

Our relatively small IT team were in constant action trying to stay on top of some of the threats we faced. But even the best team in the world need to sleep. And we found attackers were taking advantage of this, conducting much of their activity outside of office hours, in the middle of the night or on weekends. This led us to the conclusion that we needed something that could respond autonomously, around the clock, to contain serious emerging threats.

Incorporating Autonomous Response into the security stack

The decision to let an AI make decisions and actively intervene in our environment was not taken lightly and prompted a number of considerations. Some people in our team were sceptical and thought it wouldn’t work, others feared that the AI would replace them and render their jobs redundant. Neither turned out to be the case.

One concern was that the AI would trip up our system, with false positives triggering unwanted actions and resulting in disruption. But after a short learning period and some relatively simple fine-tuning, its actions are now extremely precise, acting only in the case of a serious attack and intervening in a targeted way, blocking only unwanted connections without taking the device offline.

As for the AI making our humans redundant: this hasn’t happened either. We’ve found that the AI augments our team and works alongside them: it does much of the heavy lifting: the tedious, manual work, and it means our team can spend their time on things that matter, being proactive and staying on top of threats rather than always playing catch up.

It’s interesting how over time, Autonomous Response has naturally integrated with our workflow. Our experiences over the last two years have definitely prompted a change in philosophy, from a wariness towards AI to embracing a system where humans and AI work in tandem. We even use the product as an education tool: the information it gives us has become incredibly valuable for junior staff who are still learning how to respond to certain events. We’re at the point now where Darktrace is referred to almost as a sentient being; it has become another member of the team, responding to threats and protecting our business like everyone else.

Expanding Autonomous Response across the enterprise

Once we were confident in the AI’s decision-making and its ability to detect and respond to known and unknown threats around the clock, the next phase was to implement this technology across all parts of the digital estate.

When we moved to a system of remote working following the pandemic, it was important to us that Autonomous Response be brought to remote endpoint devices, so that it could be active in protecting our employees, wherever they were working from. We did already have detection and response in place on the endpoint, but by this point, Darktrace’s Autonomous Response had become so integral to our security posture that we needed to extend it to cover every base.

We also adopted Antigena Email, which uses the same underlying approach to respond to novel threats targeting the inbox, and Antigena SaaS, to respond to account takeovers in Microsoft 365.

Having a single AI approach span multiple silos serves to increase the accuracy of its decision-making: an understanding of endpoint and network traffic can help Antigena Email understand if a link in an email is threatening, for example. Or in the case of account takeover, an unusual SaaS login followed by suspicious email activity can paint a picture of one systematic attack.

The more sophisticated attackers today are unlikely to target just one corner of your digital estate. Having a single AI system connect the dots across cloud, email, network and endpoints puts us in the best possible position.

A crucial layer of defense

I liken the need for Darktrace with the need to wear a seatbelt. You hope that most of the time, you won’t need it. But when the worst happens, it can save you from a potentially fatal threat.

In early 2022 we were targeted by a very targeted, clever attack, in which the attacker adopted a variety of techniques to stay under the radar of the rest of our security stack. It began with a seemingly benign SaaS login from an expected region of the world, but from a different network within that region. We would not have seen this attack without Darktrace connecting multiple subtle anomalies. And we know that if there was some lateral movement later down the line then Antigena would kick in in a variety of different ways to shut the attack down.

As we continue to be targeted by increasingly advanced attackers, this is the kind of insurance we need. Darktrace is not the only tool we use, but it has become the foundation that everything is built on. And with Autonomous Response across our digital estate, we know we have best-in-class protection against novel attacks, no matter where or when they come in.

Hear from more Darktrace customers

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dr Robert Spangler
Associate Executive Director of the New Jersey State Bar Association

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk: In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy


Prompt Injection Moves from Theory to Front-Page Breach: We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken: When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact: One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target: Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy


Increased commercialization of generative AI and AI assistants in cyber attacks: One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

 

-- Toby Lewis, Global Head of Threat Analysis


Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI