Blog
/
/
March 29, 2022

NJ State Bar Moves Towards Business-Wide Autonomous Security

See how the New Jersey State Bar Association adopted Darktrace’s Autonomous Response technology across and stopped a sophisticated SaaS attack. Read more.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dr Robert Spangler
Associate Executive Director of the New Jersey State Bar Association
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Mar 2022

The New Jersey State Bar Association supports more than 18,000 attorneys, judges and legislators in the metropolitan New York City region. From an IT security perspective, our primary goals are to protect the sensitive data of our employees and members, and minimize the disruption to our business caused by cyber-threats.

Over the past few years, our team has become increasingly concerned about the terrifying pace at which the threat landscape is evolving. We’ve seen escalating ransomware attacks, we’ve seen attackers targeting the supply chain and exploiting SaaS platforms like Microsoft 365 and Salesforce. We see new vulnerabilities coming out all the time. On the email side, we see evolving attack techniques, with malicious links hidden in documents so that an email bypasses the first line of defense, or lateral movement against calendar invites.

The pace of attacker innovation tells us one thing: we can’t just protect ourselves against the threats that we know about; we must also prepare for those we don’t know about. What might sound like a paradox is actually achievable with the right approach.

This was one of the factors that drew us to Darktrace two years ago: its ability to learn what’s ‘normal’ for our organization and detect anomalies that indicate a cyber-threat. And it wasn’t long into the deployment that this started to yield strong results, shining a light on new vulnerabilities and activity we didn’t previously know about.

But the other major factor in that purchasing decision was Darktrace’s Autonomous Response capability. Cyber-attacks are no longer controlled by a human from start to finish. Attackers are adopting automation and machine learning to scale up and launch faster and more damaging campaigns.

Our relatively small IT team were in constant action trying to stay on top of some of the threats we faced. But even the best team in the world need to sleep. And we found attackers were taking advantage of this, conducting much of their activity outside of office hours, in the middle of the night or on weekends. This led us to the conclusion that we needed something that could respond autonomously, around the clock, to contain serious emerging threats.

Incorporating Autonomous Response into the security stack

The decision to let an AI make decisions and actively intervene in our environment was not taken lightly and prompted a number of considerations. Some people in our team were sceptical and thought it wouldn’t work, others feared that the AI would replace them and render their jobs redundant. Neither turned out to be the case.

One concern was that the AI would trip up our system, with false positives triggering unwanted actions and resulting in disruption. But after a short learning period and some relatively simple fine-tuning, its actions are now extremely precise, acting only in the case of a serious attack and intervening in a targeted way, blocking only unwanted connections without taking the device offline.

As for the AI making our humans redundant: this hasn’t happened either. We’ve found that the AI augments our team and works alongside them: it does much of the heavy lifting: the tedious, manual work, and it means our team can spend their time on things that matter, being proactive and staying on top of threats rather than always playing catch up.

It’s interesting how over time, Autonomous Response has naturally integrated with our workflow. Our experiences over the last two years have definitely prompted a change in philosophy, from a wariness towards AI to embracing a system where humans and AI work in tandem. We even use the product as an education tool: the information it gives us has become incredibly valuable for junior staff who are still learning how to respond to certain events. We’re at the point now where Darktrace is referred to almost as a sentient being; it has become another member of the team, responding to threats and protecting our business like everyone else.

Expanding Autonomous Response across the enterprise

Once we were confident in the AI’s decision-making and its ability to detect and respond to known and unknown threats around the clock, the next phase was to implement this technology across all parts of the digital estate.

When we moved to a system of remote working following the pandemic, it was important to us that Autonomous Response be brought to remote endpoint devices, so that it could be active in protecting our employees, wherever they were working from. We did already have detection and response in place on the endpoint, but by this point, Darktrace’s Autonomous Response had become so integral to our security posture that we needed to extend it to cover every base.

We also adopted Antigena Email, which uses the same underlying approach to respond to novel threats targeting the inbox, and Antigena SaaS, to respond to account takeovers in Microsoft 365.

Having a single AI approach span multiple silos serves to increase the accuracy of its decision-making: an understanding of endpoint and network traffic can help Antigena Email understand if a link in an email is threatening, for example. Or in the case of account takeover, an unusual SaaS login followed by suspicious email activity can paint a picture of one systematic attack.

The more sophisticated attackers today are unlikely to target just one corner of your digital estate. Having a single AI system connect the dots across cloud, email, network and endpoints puts us in the best possible position.

A crucial layer of defense

I liken the need for Darktrace with the need to wear a seatbelt. You hope that most of the time, you won’t need it. But when the worst happens, it can save you from a potentially fatal threat.

In early 2022 we were targeted by a very targeted, clever attack, in which the attacker adopted a variety of techniques to stay under the radar of the rest of our security stack. It began with a seemingly benign SaaS login from an expected region of the world, but from a different network within that region. We would not have seen this attack without Darktrace connecting multiple subtle anomalies. And we know that if there was some lateral movement later down the line then Antigena would kick in in a variety of different ways to shut the attack down.

As we continue to be targeted by increasingly advanced attackers, this is the kind of insurance we need. Darktrace is not the only tool we use, but it has become the foundation that everything is built on. And with Autonomous Response across our digital estate, we know we have best-in-class protection against novel attacks, no matter where or when they come in.

Hear from more Darktrace customers

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dr Robert Spangler
Associate Executive Director of the New Jersey State Bar Association

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI