Blog
/
/
April 4, 2022

Explore Internet-Facing System Vulnerabilities

Read about 2021's top four incidents and how Darktrace's advanced threat detection technology identified and mitigated vulnerabilities. Learn more.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Apr 2022

By virtue of their exposure, Internet-facing systems (i.e., systems which have ports open/exposed to the wider Internet) are particularly susceptible to compromise. Attackers typically compromise Internet-facing systems by exploiting zero-day vulnerabilities in applications they run. During 2021, critical zero-day vulnerabilities in the following applications were publicly disclosed:

Internet-facing systems running these applications were consequently heavily targeted by attackers. In this post, we will provide examples of compromises of these systems observed by Darktrace’s SOC team in 2021. As will become clear, successful exploitation of weaknesses in Internet-facing systems inevitably results in such systems doing things which they do not normally do. Rather than focusing on identifying attempts to exploit these weaknesses, Darktrace focuses on identifying the unusual behaviors which inevitably ensue. The purpose of this post is to highlight the effectiveness of this approach.

Exchange server compromise

In January, researchers from the cyber security company DEVCORE reported a series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyLogon’.[1] ProxyLogon consists of a server-side request forgery (SSRF) vulnerability (CVE-2021-26855) and a remote code execution (RCE) vulnerability (CVE-2021-27065). Attackers were observed exploiting these vulnerabilities in the wild from as early as January 6.[2] In April, DEVCORE researchers reported another series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyShell’.[3] ProxyShell consists of a pre-authentication path confusion vulnerability (CVE-2021-34473), a privilege elevation vulnerability (CVE-2021-34523), and a post-authentication RCE vulnerability (CVE-2021-31207). Attackers were first observed exploiting these vulnerabilities in the wild in August.[4] In many cases, attackers exploited the ProxyShell and ProxyLogon vulnerabilities in order to create web shells on the targeted Exchange servers. The presence of these web shells provided attackers with the means to remotely execute commands on the compromised servers.

In early August 2021, by exploiting the ProxyShell vulnerabilities, an attacker gained the rights to remotely execute PowerShell commands on an Internet-facing Exchange server within the network of a US-based transportation company. The attacker subsequently executed a number of PowerShell commands on the server. One of these commands caused the server to make a 28-minute-long SSL connection to a highly unusual external endpoint. Within a couple of hours, the attacker managed to strengthen their foothold within the network by installing AnyDesk and CobaltStrike on several internal devices. In mid-August, the attacker got the devices on which they had installed Cobalt Strike to conduct network reconnaissance and to transfer terabytes of data to the cloud storage service, MEGA. At the end of August, the attacker got the devices on which they had installed AnyDesk to execute Conti ransomware and to spread executable files and script files to further internal devices.

In this example, the attacker’s exploitation of ProxyShell immediately resulted in the Exchange Server making a long SSL connection to an unusual external endpoint. This connection caused the model Device / Long Agent Connection to New Endpoint to breach. The subsequent reconnaissance, lateral movement, C2, external data transfer, and encryption behavior brought about by the attacker were also picked up by Darktrace’s models.

A non-exhaustive list of the models that breached as a result of the behavior brought about by the attacker:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Confluence server compromise

Atlassian’s Confluence is an application which provides the means for building collaborative, virtual workspaces. In the era of remote working, the value of such an application is undeniable. The public disclosure of a critical remote code execution (RCE) vulnerability (CVE-2021-26084) in Confluence in August 2021 thus provided a prime opportunity for attackers to cause havoc. The vulnerability, which arises from the use of Object-Graph Navigation Language (OGNL) in Confluence’s tag system, provides attackers with the means to remotely execute code on vulnerable Confluence server by sending a crafted HTTP request containing a malicious parameter.[5] Attackers were first observed exploiting this vulnerability towards the end of August, and in the majority of cases, attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable servers.[6]

At the beginning of September 2021, an attacker was observed exploiting CVE-2021-26084 in order to install the crypto-mining tool, XMRig, as well as a shell script, onto an Internet-facing Confluence server within the network of an EMEA-based television and broadcasting company. Within a couple of hours, the attacker installed files associated with the crypto-mining malware, Kinsing, onto the server. The Kinsing-infected server then immediately began to communicate over HTTP with the attacker’s C2 infrastructure. Around the time of this activity, the server was observed using the MinerGate crypto-mining protocol, indicating that the server had begun to mine cryptocurrency.

In this example, the attacker’s exploitation of CVE-2021-26084 immediately resulted in the Confluence server making an HTTP GET request with an unusual user-agent string (one associated with curl in this case) to a rare external IP. This behavior caused the models Device / New User Agent, Anomalous Connection / New User Agent to IP Without Hostname, and Anomalous File / Script from Rare Location to breach. The subsequent file downloads, C2 traffic and crypto-mining activity also resulted in several models breaching.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Device / Internet Facing Device with High Priority Alert

GitLab server compromise

GitLab is an application providing services ranging from project planning to source code management. Back in April 2021, a critical RCE vulnerability (CVE-2021-22205) in GitLab was publicly reported by a cyber security researcher via the bug bounty platform, HackerOne.[7] The vulnerability, which arises from GitLab’s use of ExifTool for removing metadata from image files, [8] enables attackers to remotely execute code on vulnerable GitLab servers by uploading specially crafted image files.[9] Attackers were first observed exploiting CVE-2021-22205 in the wild in June/July.[10] A surge in exploitations of the vulnerability was observed at the end of October, with attackers exploiting the flaw in order to assemble botnets.[11] Darktrace observed a significant number of cases in which attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable GitLab servers.

On October 29, an attacker successfully exploited CVE-2021-22205 on an Internet-facing GitLab server within the network of a UK-based education provider. The organization was trialing Darktrace when this incident occurred. The attacker installed several executable files and shell scripts onto the server by exploiting the vulnerability. The attacker communicated with the compromised server (using unusual ports) for several days, before making the server transfer large volumes of data externally and download the crypto-mining tool, XMRig, as well as the botnet malware, Mirai. The server was consequently observed making connections to the crypto-mining pool, C3Pool.

In this example, the attacker’s exploitation of the vulnerability in GitLab immediately resulted in the server making an HTTP GET request with an unusual user-agent string (one associated with Wget in this case) to a rare external IP. The models Anomalous Connection / New User Agent to IP Without Hostname and Anomalous File / EXE from Rare External Location breached as a result of this behavior. The attacker’s subsequent activity on the server over the next few days resulted in frequent model breaches.

A non-exhaustive list of the models which breached as a result of the attacker’s activity on the server:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing Device with High Priority Alert
  • Anomalous File / Script from Rare Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Device / Initial Breach Chain Compromise
  • Unusual Activity / Unusual External Data to New IPs
  • Anomalous Server Activity / Outgoing from Server
  • Device / Large Number of Model Breaches from Critical Network Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Compromise / Suspicious File and C2
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Compliance / Crypto Currency Mining Activity
  • Compliance / High Priority Crypto Currency Mining
  • Anomalous File / Zip or Gzip from Rare External Location
  • Compromise / Monero Mining
  • Device / Internet Facing Device with High Priority Alert
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous File / Numeric Exe Download

Log4j server compromise

On December 9 2021, a critical RCE vulnerability (dubbed ‘Log4Shell’) in version 2 of Apache’s Log4j was publicly disclosed by researchers at LunaSec.[12] As a logging library present in potentially millions of Java applications,[13] Log4j constitutes an obscured, yet ubiquitous feature of the digital world. The vulnerability (CVE-2021-44228), which arises from Log4j’s Java Naming and Directory Interface (JNDI) Lookup feature, enables an attacker to make a vulnerable server download and execute a malicious Java class file. To exploit the vulnerability, all the attacker must do is submit a specially crafted JNDI lookup request to the server. The fact that Log4j is present in so many applications and that the exploitation of this vulnerability is so simple, Log4Shell has been dubbed the ‘most critical vulnerability of the last decade’.[14] Attackers have been exploiting Log4Shell in the wild since at least December 1.[15] Since then, attackers have been observed exploiting the vulnerability to install crypto-mining tools, Cobalt Strike, and RATs onto vulnerable servers.[16]

On December 10, one day after the public disclosure of Log4Shell, an attacker successfully exploited the vulnerability on a vulnerable Internet-facing server within the network of a US-based architecture company. By exploiting the vulnerability, the attacker managed to get the server to download and execute a Java class file named ‘Exploit69ogQNSQYz.class’. Executing the code in this file caused the server to download a shell script file and a file related to the Kinsing crypto-mining malware. The Kinsing-infected server then went on to communicate over HTTP with a C2 server. Since the customer was using the Proactive Threat Notification (PTN) service, they were immediately alerted to this activity, and the server was subsequently quarantined, preventing crypto-mining activity from taking place.

In this example, the attacker’s exploitation of the zero-day vulnerability immediately resulted in the vulnerable server making an HTTP GET request with an unusual user-agent string (one associated with Java in this case) to a rare external IP. The models Anomalous Connection / Callback on Web Facing Device and Anomalous Connection / New User Agent to IP Without Hostname breached as a result of this behavior. The device’s subsequent file downloads and C2 activity caused several Darktrace models to breach.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare External Location
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Round-up

It is inevitable that attackers will attempt to exploit zero-day vulnerabilities in applications running on Internet-facing devices. Whilst identifying these attempts is useful, the fact that attackers regularly exploit new zero-days makes the task of identifying attempts to exploit them akin to a game of whack-a-mole. Whilst it is uncertain which zero-day vulnerability attackers will exploit next, what is certain is that their exploitation of it will bring about unusual behavior. No matter the vulnerability, whether it be a vulnerability in Microsoft Exchange, Confluence, GitLab, or Log4j, Darktrace will identify the unusual behaviors which inevitably result from its exploitation. By identifying unusual behaviors displayed by Internet-facing devices, Darktrace thus makes it almost impossible for attackers to successfully exploit zero-day vulnerabilities without being detected.

For Darktrace customers who want to find out more about detecting potential compromises of internet-facing devices, refer here for an exclusive supplement to this blog.

Thanks to Andy Lawrence for his contributions.

Footnotes

1. https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

2. https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/

3. https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

4. https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/

5. https://www.kaspersky.co.uk/blog/confluence-server-cve-2021-26084/23376/

6. https://www.bleepingcomputer.com/news/security/atlassian-confluence-flaw-actively-exploited-to-install-cryptominers/

7. https://hackerone.com/reports/1154542

8. https://security.humanativaspa.it/gitlab-ce-cve-2021-22205-in-the-wild/

9.https://about.gitlab.com/releases/2021/04/14/security-release-gitlab-13-10-3-released/

10. https://www.rapid7.com/blog/post/2021/11/01/gitlab-unauthenticated-remote-code-execution-cve-2021-22205-exploited-in-the-wild/

11. https://www.hackmageddon.com/2021/12/16/1-15-november-2021-cyber-attacks-timeline/

12. https://www.lunasec.io/docs/blog/log4j-zero-day/

13. https://www.csoonline.com/article/3644472/apache-log4j-vulnerability-actively-exploited-impacting-millions-of-java-based-apps.html

14. https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

15. https://www.rapid7.com/blog/post/2021/12/15/the-everypersons-guide-to-log4shell-cve-2021-44228/

16. https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

November 19, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 19, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI