Blog
/
/
November 29, 2022

How to Cut Through Cyber Security Noise

Learn how Cyber AI Analyst tackles alert fatigue by categorizing vast amounts of data into actionable security incidents for your team's review.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Elliot Stocker
Product SME
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022

For cyber security experts, it’s hard enough staying on top of the latest threats and emerging attacks without having to deal with a virtual tsunami of alert noise from systems monitoring email, SaaS environments, and endpoints – in addition to IaaS cloud and on-premises networks. Unfortunately, fatigue from these demands can lead to overworking, burnout, and crucially, high employee turnover. 

The worldwide industry shortage of 3.5 million cyber security professionals only exacerbates the problem. Not only does it add pressure to the current stock of skilled and available security professionals, but it also raises the stakes for CISOs and other security leaders to find a way to cut through the alert noise while staying on ahead of threat actors who never stop innovating and applying novel malware strains and attack techniques.

Working Smarter Not Harder

One way to help with retention is to empower security teams to break away from monotony and to think creatively and leverage their expertise where it can really add value. Working smarter, rather than harder, is often easier said than done, but by employing automation and AI-driven tools to take on the heavy lifting of threat detection, investigation, and response, human teams can be given the breathing room needed to focus on long-term objectives and think more deeply about their security approaches.

It is important for security programs to continuously level up alongside evolving threat landscapes by questioning existing security operations, and this cannot be achieved during times of hand-to-hand alert combat.

When alerts are fewer, higher quality, and context-heavy, the background to each can be easily explored, whether that’s reevaluating a policy or configuration, or simply asking useful questions around the company’s broader security approach. Work done at this level empowers security teams and fosters growth.

Less is More

Business risk– or the potential impact of cyber disruption– should be the number one concern driving a security team, but lack of resources is a near-constant constraint. Reducing the volume of alerts doesn’t just mean bringing the noise floor up. You can think of the noise floor as an alert threshold: if it is too high then there are fewer alerts, but more threats may be missed, whereas if it is too low, there are high volumes of unhelpful false positives. Freeing up time for the team must not equate to ignoring alerts; it should instead mean focusing on the alerts that matter.

Darktrace’s technologies make this possible, with Darktrace DETECT™ and Cyber AI Analyst working together to address alert fatigue and burnout for security teams while strengthening an organizations’ overall security posture. Cyber AI Analyst essentially takes over the busy work from the human analysts and elevates a team’s overall decision making. Teams now operate at higher levels, as they’re not stuck in mundane alert management and humans are brought in only after the machine and AI have done the heavy lifting.

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

Figure 1: Billions of individual events are reduced into a critical incident for review


Imagine a scenario in which Darktrace observed around 9.6 billion events over a 28-day period. DETECT and Cyber AI Analyst might distill that huge amount of data down into just, say, 54 critical incidents, or just two per day. Here’s how:

9.6 billion events

When trying to understand the full picture, every single puzzle piece counts. That’s why Darktrace’s Self-Learning AI goes wherever your organization has data, integrating with data sources across the digital estate, including network, email, endpoints, OT, cloud, and SaaS environments. And with an open architecture, Darktrace facilitates quick and easy integrations with everything from SIEMs and SOARs to public clouds and the latest Zero Trust technologies. So, any data can become learnable, whether directly ingested or via integration.

By examining this full and contextualized data set, Self-Learning AI builds a constantly evolving understanding of what ‘normal’ looks like for the entire organization. Every connection, every email, app login, resource accessed, VM spun up, PLC reprogrammed, and more become signals from which Darktrace can learn, evaluate, and improve its understanding.

40,404 model breaches

The billions of events are analyzed by Darktrace DETECT, which uses its extensive knowledge of ‘normal’ to draw out hosts of subtle anomalies or ‘AI model breaches.’ Many of these AI model breaches will be weak indicators of threatening activity, and most will not be sufficient to individually signal a threat. For that reason, no human attention is required at this stage. Darktrace DETECT will continue to draw anomalous behaviors from the ongoing stream of events without the need for intervention. 

200 incidents

The Cyber AI Analyst takes the total list of model breaches collated by DETECT and performs the truly sophisticated work of determining distinct threat incidents. By piecing together anomalies which may, in themselves, appear harmless, the AI Analyst draws out subtle and often wide-ranging attacks, tracking their route from the initial compromise to the present moment. This creates a much shorter list of genuine threat incidents, but there is still no need for human attention at this stage.

54 critical incidents

Once it has discovered the threat incidents facing an organization, the Cyber AI Analyst begins the crucial processes of triage to determine which incidents need to be surfaced to the security team, and in what order of priority. This supplies the human team with a highly focused briefing of the most pressing threats, massively reducing their overall workload and minimizing or potentially eradicating alert fatigue. In the above example of a month with over 9.6 billion distinct events, the team are left with just two incidents to address per day. These two incidents are clearly presented with natural language-processing and all the most relevant info, including details, devices, and dates. 

“When we had other, noisier systems, we didn’t have the time to have truly in-depth discussions or conduct deep investigations, so there were fewer teachable moments for junior team members and fewer opportunities to inform our cybersecurity strategy as a whole,” Spangler said. “Now, we’re not just a better team, we’re more efficient, responsive, and informed than we’ve ever been. We’re all better cyber security professionals as a result.”

In the event of a breach, CISOs and security leaders want the full incident report, and they want it yesterday. The promise of AI is to handle specific tasks at a speed and scale that humans can’t. Going from 9.6 billion events to 54 incidents demonstrates the scale, but it’s important to consider the impact of speed here as well, as the Cyber AI Analyst works in real time, meaning all relevant events are presented in an easy to consume downloadable report available immediately upon investigation.

This isn’t a black box either; every step of the AI Analyst’s investigation process is visible to the human team. Not only can they see the relevant events and breaches that led to the incident, but if required, they can pivot into them easily with a click. If the investigation requires going all the way down to the metadata level to easily peruse the filtered events of the 9.6 billion overall signals or even to PCAP data, those are available and easy to find too.

Since DETECT and Cyber AI Analyst not only reduce alert fatigue but also simplify incident investigations, security teams feel empowered and experience less burnout. 

“We’ve been stable and have had minimal turnover since we started using AI Analyst,” Spangler said. “We’re not scrambling to keep up with noisy and time-consuming false positives, making the investigations that we undertake stimulating and– I say this cautiously– fun! Put simply, the thing we all love about this career, the virtual chess game we play with attackers, is a lot more fun when you know you’re going to win.”

Autonomous Response

Organizations that deploy Darktrace RESPOND™ can address the incidents raised by DETECT and the Cyber AI Analyst autonomously, and in mere seconds. Using the full context of the organization built up by Self-Learning AI, RESPOND takes the least disruptive measures necessary to disarm threats at machine speed. By the time the security team learns about the attack, it is already contained, continuing to save them from the hand-to-hand combat of threat fighting.

With day-to-day threat detection, response, and analysis taken care of, security teams are free to give full and sustained attention to their overall security posture. Neutralized threats may yet reveal broader security gaps and potential improvements which the team now has the time and headspace to pursue.

For example, discovering a trend that users are uploading potentially sensitive data via third-party file-sharing services might lead to a discussion about whether it should be company policy to block access to this service, reducing to zero the number of future alerts that would have been triggered by this behavior. Importantly, this wouldn’t be altering the aforementioned noise floor, but instead fundamentally altering security policies to align with the needs of the business, which could indirectly affect future alerting, as activities may subside.

As a result, practitioners find more value in their work, security teams efforts are optimized, and organizations are strengthened overall.

“We’re now focused on the items that AI Analyst alerts us to, which are always worth looking into because they either identify an activity that we need to get eyes on and/or provide us with insight into ways we can harden our network,” Spangler said. “The hardening that we’ve done has been incalculably beneficial– it’s one of the reasons we get fewer alerts, and it’s also protected us against a wide variety of threats.”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Elliot Stocker
Product SME

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI