Blog
/
/
November 29, 2022

How to Cut Through Cyber Security Noise

Learn how Cyber AI Analyst tackles alert fatigue by categorizing vast amounts of data into actionable security incidents for your team's review.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Elliot Stocker
Product SME
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2022

For cyber security experts, it’s hard enough staying on top of the latest threats and emerging attacks without having to deal with a virtual tsunami of alert noise from systems monitoring email, SaaS environments, and endpoints – in addition to IaaS cloud and on-premises networks. Unfortunately, fatigue from these demands can lead to overworking, burnout, and crucially, high employee turnover. 

The worldwide industry shortage of 3.5 million cyber security professionals only exacerbates the problem. Not only does it add pressure to the current stock of skilled and available security professionals, but it also raises the stakes for CISOs and other security leaders to find a way to cut through the alert noise while staying on ahead of threat actors who never stop innovating and applying novel malware strains and attack techniques.

Working Smarter Not Harder

One way to help with retention is to empower security teams to break away from monotony and to think creatively and leverage their expertise where it can really add value. Working smarter, rather than harder, is often easier said than done, but by employing automation and AI-driven tools to take on the heavy lifting of threat detection, investigation, and response, human teams can be given the breathing room needed to focus on long-term objectives and think more deeply about their security approaches.

It is important for security programs to continuously level up alongside evolving threat landscapes by questioning existing security operations, and this cannot be achieved during times of hand-to-hand alert combat.

When alerts are fewer, higher quality, and context-heavy, the background to each can be easily explored, whether that’s reevaluating a policy or configuration, or simply asking useful questions around the company’s broader security approach. Work done at this level empowers security teams and fosters growth.

Less is More

Business risk– or the potential impact of cyber disruption– should be the number one concern driving a security team, but lack of resources is a near-constant constraint. Reducing the volume of alerts doesn’t just mean bringing the noise floor up. You can think of the noise floor as an alert threshold: if it is too high then there are fewer alerts, but more threats may be missed, whereas if it is too low, there are high volumes of unhelpful false positives. Freeing up time for the team must not equate to ignoring alerts; it should instead mean focusing on the alerts that matter.

Darktrace’s technologies make this possible, with Darktrace DETECT™ and Cyber AI Analyst working together to address alert fatigue and burnout for security teams while strengthening an organizations’ overall security posture. Cyber AI Analyst essentially takes over the busy work from the human analysts and elevates a team’s overall decision making. Teams now operate at higher levels, as they’re not stuck in mundane alert management and humans are brought in only after the machine and AI have done the heavy lifting.

“Before AI Analyst, we were barely treading water with all of the alerts, most of which were false positives, our old systems produced daily. With AI Analyst, we’ve been able to exponentially reduce those alerts, harden our environment, and get strategic.”

Dr. Robert Spangler, the CISO and Assistant Executive Director of the New Jersey State Bar Association.

Figure 1: Billions of individual events are reduced into a critical incident for review


Imagine a scenario in which Darktrace observed around 9.6 billion events over a 28-day period. DETECT and Cyber AI Analyst might distill that huge amount of data down into just, say, 54 critical incidents, or just two per day. Here’s how:

9.6 billion events

When trying to understand the full picture, every single puzzle piece counts. That’s why Darktrace’s Self-Learning AI goes wherever your organization has data, integrating with data sources across the digital estate, including network, email, endpoints, OT, cloud, and SaaS environments. And with an open architecture, Darktrace facilitates quick and easy integrations with everything from SIEMs and SOARs to public clouds and the latest Zero Trust technologies. So, any data can become learnable, whether directly ingested or via integration.

By examining this full and contextualized data set, Self-Learning AI builds a constantly evolving understanding of what ‘normal’ looks like for the entire organization. Every connection, every email, app login, resource accessed, VM spun up, PLC reprogrammed, and more become signals from which Darktrace can learn, evaluate, and improve its understanding.

40,404 model breaches

The billions of events are analyzed by Darktrace DETECT, which uses its extensive knowledge of ‘normal’ to draw out hosts of subtle anomalies or ‘AI model breaches.’ Many of these AI model breaches will be weak indicators of threatening activity, and most will not be sufficient to individually signal a threat. For that reason, no human attention is required at this stage. Darktrace DETECT will continue to draw anomalous behaviors from the ongoing stream of events without the need for intervention. 

200 incidents

The Cyber AI Analyst takes the total list of model breaches collated by DETECT and performs the truly sophisticated work of determining distinct threat incidents. By piecing together anomalies which may, in themselves, appear harmless, the AI Analyst draws out subtle and often wide-ranging attacks, tracking their route from the initial compromise to the present moment. This creates a much shorter list of genuine threat incidents, but there is still no need for human attention at this stage.

54 critical incidents

Once it has discovered the threat incidents facing an organization, the Cyber AI Analyst begins the crucial processes of triage to determine which incidents need to be surfaced to the security team, and in what order of priority. This supplies the human team with a highly focused briefing of the most pressing threats, massively reducing their overall workload and minimizing or potentially eradicating alert fatigue. In the above example of a month with over 9.6 billion distinct events, the team are left with just two incidents to address per day. These two incidents are clearly presented with natural language-processing and all the most relevant info, including details, devices, and dates. 

“When we had other, noisier systems, we didn’t have the time to have truly in-depth discussions or conduct deep investigations, so there were fewer teachable moments for junior team members and fewer opportunities to inform our cybersecurity strategy as a whole,” Spangler said. “Now, we’re not just a better team, we’re more efficient, responsive, and informed than we’ve ever been. We’re all better cyber security professionals as a result.”

In the event of a breach, CISOs and security leaders want the full incident report, and they want it yesterday. The promise of AI is to handle specific tasks at a speed and scale that humans can’t. Going from 9.6 billion events to 54 incidents demonstrates the scale, but it’s important to consider the impact of speed here as well, as the Cyber AI Analyst works in real time, meaning all relevant events are presented in an easy to consume downloadable report available immediately upon investigation.

This isn’t a black box either; every step of the AI Analyst’s investigation process is visible to the human team. Not only can they see the relevant events and breaches that led to the incident, but if required, they can pivot into them easily with a click. If the investigation requires going all the way down to the metadata level to easily peruse the filtered events of the 9.6 billion overall signals or even to PCAP data, those are available and easy to find too.

Since DETECT and Cyber AI Analyst not only reduce alert fatigue but also simplify incident investigations, security teams feel empowered and experience less burnout. 

“We’ve been stable and have had minimal turnover since we started using AI Analyst,” Spangler said. “We’re not scrambling to keep up with noisy and time-consuming false positives, making the investigations that we undertake stimulating and– I say this cautiously– fun! Put simply, the thing we all love about this career, the virtual chess game we play with attackers, is a lot more fun when you know you’re going to win.”

Autonomous Response

Organizations that deploy Darktrace RESPOND™ can address the incidents raised by DETECT and the Cyber AI Analyst autonomously, and in mere seconds. Using the full context of the organization built up by Self-Learning AI, RESPOND takes the least disruptive measures necessary to disarm threats at machine speed. By the time the security team learns about the attack, it is already contained, continuing to save them from the hand-to-hand combat of threat fighting.

With day-to-day threat detection, response, and analysis taken care of, security teams are free to give full and sustained attention to their overall security posture. Neutralized threats may yet reveal broader security gaps and potential improvements which the team now has the time and headspace to pursue.

For example, discovering a trend that users are uploading potentially sensitive data via third-party file-sharing services might lead to a discussion about whether it should be company policy to block access to this service, reducing to zero the number of future alerts that would have been triggered by this behavior. Importantly, this wouldn’t be altering the aforementioned noise floor, but instead fundamentally altering security policies to align with the needs of the business, which could indirectly affect future alerting, as activities may subside.

As a result, practitioners find more value in their work, security teams efforts are optimized, and organizations are strengthened overall.

“We’re now focused on the items that AI Analyst alerts us to, which are always worth looking into because they either identify an activity that we need to get eyes on and/or provide us with insight into ways we can harden our network,” Spangler said. “The hardening that we’ve done has been incalculably beneficial– it’s one of the reasons we get fewer alerts, and it’s also protected us against a wide variety of threats.”

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Elliot Stocker
Product SME

More in this series

No items found.

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI