ブログ
/
Network
/
August 22, 2023

Darktrace’s Detection of Unattributed Ransomware

Leveraging anomaly-based detection, we successfully identified an ongoing ransomware attack on the network of a customer and the activity that preceded it.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2023

In the current threat landscape, much of the conversation around ransomware focusses on high-profile strains and notorious threat groups. While organizations and their security teams are justified in these concerns, it is important not to underestimate the danger posed by smaller scale, unattributed ransomware attacks.

Unlike attributed ransomware strains, there are often no playbooks or lists of previously observed indicators of compromise (IoCs) that security teams can consult to help them shore up their cyber defenses. As such, anomaly detection is critical to ensure that emerging threats can be detected based on their abnormality on the network, rather than relying heavily on threat intelligence.

In mid-March 2023, a Darktrace customer requested analytical support from the Darktrace Security Operations Center (SOC) after they had been hit by a ransomware attack a few hours earlier. Darktrace was able to uncover a myriad of malicious activity that preceded the eventual ransomware deployment, ultimately assisting the customer to identify compromised devices and contain the ransomware attack.

Attack Overview

While there were a small number of endpoints that had been flagged as malicious by open-source intelligence (OSINT), Darktrace DETECT™ focused on the unusualness of the activity surrounding this emerging ransomware attack. This provided unparalleled visibility over this ransomware attack at every stage of the cyber kill chain, whilst also revealing the potential origins of the compromise which came months area.

Initial Compromise

Initial investigation revealed that several devices that Darktrace were observed performing suspicious activity had previously engaged in anomalous behavior several months before the ransomware event, indicating this could be a part of a repeated compromise or the result of initial access brokers.

Most notably, in late January 2023 there was a spike in unusual activity when some of the affected devices were observed performing activity indicative of network and device scanning.

Darktrace DETECT identified some of the devices establishing unusually high volumes of internal failed connections via TCP and UDP, and the SMB protocol. Various key ports, such as 135, 139, and 445, were also scanned.

Due to the number of affected devices, the exact initial attack vector is unclear; however, one likely scenario is associated with an internet-facing DNS server. Towards the end of January 2023, the server began to receive unusual TCP DNS requests from the rare external endpoint, 103.203.59[.]3, which had been flagged as potentially malicious by OSINT [4]. Based on a portion of the hostname of the device, dc01, we can assume that this server served as a gateway to the domain controller. If a domain controller is compromised, a malicious actor would gain access to usernames and passwords within a network allowing attackers to obtain administrative-level access to an organization’s digital estate.

Around the same time as the unusual TCP DNS requests, Darktrace DETECT observed the domain controller engaging in further suspicious activity. As demonstrated in Figure 1, Darktrace recognized that this server was not responding to common requests from multiple internal devices, as it would be expected to. Following this, the device was observed carrying out new or uncommon Windows Management Instrumentation (WMI) activity. WMI is typically used by network administrators to manage remote and local Windows systems [3].

Figure 1: Device event log depicting the possible Initial attack vector.


Had Darktrace RESPOND™ been enabled in autonomous response mode, it would have to blocked connections originating from the compromised internal devices as soon as they were detected, while also limiting affected devices to their pre-established patterns of file to prevent them from carrying out any further malicious activity.

Darktrace subsequently observed multiple devices establishing various chains of connections that are indicative of lateral movement activity, such as unusual internal RDP and WMI requests. While there may be devices within an organization that do regularly partake these types of connections, Darktrace recognized that this activity was extremely unusual for these devices.

Darktrace’s Self-Learning AI allows for a deep understanding of customer networks and the devices within them. It’s anomaly-based threat detection capability enables it to recognize subtle deviations in a device’s normal patterns of behavior, without depending on known IoCs or signatures and rules to guide it.

Figure 2: Observed chain of possible lateral movement.


Persistence

Darktrace DETECT observed several affected devices communicating with rare external endpoints that had also been flagged as potentially malicious by OSINT tools. Multiple devices were observed performing activity indicative of NTLM brute-forcing activity, as seen in the Figure 3 which highlights the event log of the aforementioned domain controller. Said domain controller continuously engaged in anomalous behavior throughout the course of the attack. The same device was seen using a potentially compromise credential, ‘cvd’, which was observed via an SMB login event.

Figure 3: Continued unusual external connectivity.


Affected devices, including the domain controller, continued to engage in consistent communication with the endpoints prior to the actual ransomware attack. Darktrace identified that some of these malicious endpoints had likely been generated by Domain Generation Algorithms (DGA), a classic tactic utilized by threat actors. Subsequent OSINT investigation revealed that one such domain had been associated with malware such as TrojanDownloader:Win32/Upatre!rfn [5].

All external engagements were observed by Darktrace DETECT and would have been actioned on by Darktrace RESPOND, had it been configured in autonomous response mode. It would have blocked any suspicious outgoing connections originating from the compromised devices, thus preventing additional external engagement from taking place. Darktrace RESPOND works in tandem with DETECT to autonomously take action against suspicious activity based on its unusualness, rather than relying on static lists of ‘known-bads’ or malicious IoCs.

Reconnaissance

On March 14, 2023, a few days before the ransomware attack, Darktrace observed multiple internal devices failing to establish connections in a manner that suggests SMB, RDP and network scanning. Among these devices once more was the domain controller, which was seen performing potential SMB brute-forcing, representing yet another example of malicious activity carried out by this device.

Lateral Movement

Immediately prior to the attack, many compromised devices were observed mobilizing to conduct an array of high-severity lateral movement activity. Darktrace detected one device using two administrative credentials, namely ‘Administrator’ and ‘administrator’, while it also observed a notable spike in the volume of successful SMB connections from the device around the same time.

At this point, Darktrace DETECT was observing the progression of this attack along the cyber kill chain. What had started as internal recognisance, had escalated to exploitation and ensuing command-and-control activity. Following an SMB brute-force attempt, Darktrace DETECT identified a successful DCSync attack.

A DCSync attack occurs when a malicious actor impersonates a domain controller in an effort to gather sensitive information, such as user credentials and passwords hashes, by replicating directory services [1]. In this case, a device sent various successful DRSGetNCChanges operation requests to the DRSUAPI endpoint.

Data Exfiltration

Around the same time, Darktrace detected the compromised server transferring a high volume of data to rare external endpoints associated with Bublup, a third-party project management application used to save and share files. Although the actors attempted to avoid the detection of security tools by using a legitimate file storage service, Darktrace understood that this activity represented a deviation in this device’s expected pattern of life.

In one instance, around 8 GB of data was transferred, and in another, over 4 GB, indicating threat actors were employing a tactic known as ‘low and slow’ exfiltration whereby data is exfiltrated in small quantities via multiple connections, in an effort to mask their suspicious activity. While this tactic may have evaded the detection of traditional security measures, Darktrace’s anomaly-based detection allowed it to recognize that these two incidents represented a wider exfiltration event, rather than viewing the transfers in isolation.

Impact

Finally, Darktrace began to observe a large amount of suspicious SMB activity on the affected devices, most of which was SMB file encryption. DETECT observed the file extension ‘uw9nmvw’ being appended to many files across various internal shares and devices. In addition to this, a potential ransom note, ‘RECOVER-uw9nmvw-FILES.txt’, was detected on the network shortly after the start of the attack.

Figure 4: Depiction of the high-volume of suspicious SMB activity, including file encryption.


Conclusion

Ultimately, this incident show cases how Darktrace was able to successfully identify an emerging ransomware attack using its unrivalled anomaly-based detection capabilities, without having to rely on any previously established threat intelligence. Not only was Darktrace DETECT able to identify the ransomware at multiple stages of the kill chain, but it was also able to uncover the anomalous activity that took place in the buildup to the attack itself.

As the attack progressed along the cyber kill chain, escalating in severity at every juncture, DETECT was able to provide full visibility over the events. Through the successful identification of compromised devices, anomalous administrative credentials usage and encrypted files, Darktrace was able to greatly assist the customer, ensuring they were well-equipped to contain the incident and begin their incident management process.

Darktrace would have been able to aid the customer even further had they enabled its autonomous response technology on their network. Darktrace RESPOND would have taken targeted, mitigative action as soon as suspicious activity was detected, preventing the malicious actors from achieving their goals.

Credit to: Natalia Sánchez Rocafort, Cyber Security Analyst, Patrick Anjos, Senior Cyber Analyst.

MITRE Tactics/Techniques Mapping

RECONNAISSANCE

Scanning IP Blocks  (T1595.001)

RECONNAISSANCE

Vulnerability Scanning  (T1595.002)

IMPACT

Service Stop  (T1489)

LATERAL MOVEMENT

Taint Shared Content (T1080)

IMPACT

Data Encrypted for Impact (T1486)

INITIAL ACCESS

Replication Through Removable Media (T1200)

DEFENSE EVASION

Rogue Domain Controller (T1207)

COMMAND AND CONTROL

Domain Generation Algorithms (T1568.002)

EXECUTION

Windows Management Instrumentation (T1047)

INITIAL ACCESS

Phishing (T1190)

EXFILTRATION

Exfiltration Over C2 Channel (T1041)

IoC Table

IoC ----------- TYPE ------------- DESCRIPTION + PROBABILITY

CVD --------- credentials -------- Possible compromised credential

.UW9NMVW - File extension ----- Possible appended file extension

RECOVER-UW9NMVW-FILES.TXT - Ransom note - Possible ransom note observed

84.32.188[.]186 - IP address ------ C2 Endpoint

AS.EXECSVCT[.]COM - Hostname - C2 Endpoint

ZX.EXECSVCT[.]COM - Hostname - C2 Endpoint

QW.EXECSVCT[.]COM - Hostname - C2 Endpoint

EXECSVCT[.]COM - Hostname ------ C2 Endpoint

15.197.130[.]221 --- IP address ------ C2 Endpoint

AS59642 UAB CHERRY SERVERS - ASN - Possible ASN associated with C2 Endpoints

108.156.28[.]43

108.156.28[.]22

52.84.93[.]26

52.217.131[.]241

54.231.193[.]89 - IP addresses - Possible IP addresses associated with data exfiltration

103.203.59[.]3 -IP address ---- Possible IP address associated with initial attack vector

References:

[1] https://blog.netwrix.com/2021/11/30/what-is-dcsync-an-introduction/

[2] https://www.easeus.com/computer-instruction/delete-system32.html#:~:text=System32%20is%20a%20folder%20on,DLL%20files%2C%20and%20EXE%20files.

[3] https://www.techtarget.com/searchwindowsserver/definition/Windows-Management-Instrumentation#:~:text=WMI%20provides%20users%20with%20information,operational%20environments%2C%20including%20remote%20systems.

[4] https://www.virustotal.com/gui/ip-address/103.203.59[.]3

[5] https://otx.alienvault.com/indicator/ip/15.197.130[.]221

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Natalia Sánchez Rocafort
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

November 13, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI