Blog
/
/
April 15, 2021

AI Neutralizes Hafnium Cyber Attack in December 2020

Protect your business from cyber attacks with AI technology. Learn how Darktrace neutralized the Hafnium attack against Exchange servers in December 2020.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Apr 2021

In early December 2020, Darktrace AI autonomously detected and investigated a sophisticated cyber-attack that targeted a customer’s Exchange server. On March 2, 2021, Microsoft disclosed an ongoing campaign by the Hafnium threat actor group leveraging Exchange server zero-days.

Based on similarities in techniques, tools and procedures (TTPs) observed, Darktrace has now assessed with high confidence that the attack in December was the work of the Hafnium group. Although it is not possible to determine whether this attack leveraged the same Exchange zero-days as reported by Microsoft, the finding suggests that Hafnium’s campaign was active several months earlier than assumed.

As a result, organizations may want to go back as far as early December 2020 to check security logs and tools for signs of initial intrusion into their Internet-facing Exchange servers.

As Darktrace does not rely on rules or signatures, it doesn’t require a constant cloud connection. Most customers therefore operate our technology themselves, and we don’t centrally monitor their detections.

At the time of detection in December, this was one of many uncategorized, sophisticated intrusions that affected only a single customer, and was not indicative of a broader campaign.

This means that while we protect our customers from individual intrusions, we are not in a position to do global campaign tracking like other companies which focus primarily on threat intelligence and threat actor tracking.

In this blog, we will analyze the attack to aid organizations in their ongoing investigations, and to raise awareness that the Hafnium campaign may have been active for longer than previously disclosed.

Overview of the Exchange attack

The intrusion was detected at an organization in the critical national infrastructure sector in South Asia. One hypothesis is that the Hafnium group was testing out and refining its TTPs, potentially including the Exchange server exploit, before running a broad-scale campaign against Western organizations in early 2021.

The threat actor used many of the same techniques that were observed in the later Hafnium attacks, including the deployment of the low-activity China Chopper web shell, quickly followed by post-exploitation activity – attempting to move laterally and spread to critical devices in the network.

The following analysis demonstrates how Darktrace’s Enterprise Immune System detected the malicious activity, how Cyber AI Analyst automatically investigated on the incident and surfaced the alert as a top priority, and how Darktrace RESPOND (formerly known as 'Antigena') would have responded autonomously to shut down the attack, had it been in active mode.

All the activity took place in early December 2020, almost three months before Microsoft released information about the Hafnium campaign.

Figure 1: Timeline of the attack from early December 2020

Initial compromise

Unfortunately, the victim organization did not keep any logs or forensic artefacts from their Exchange server in December 2020, which would have allowed Darktrace to ascertain the exploit of the zero-day. However, there is circumstantial evidence suggesting that these Exchange server vulnerabilities were abused.

Darktrace observed no signs of compromise or change in behavior from the Internet-facing Exchange server – no prior internal admin connections, no broad-scale brute-force attempts, no account takeovers, no malware copied to the server via internal channels – until all of a sudden, it began to scan the internal network.

While this is not conclusive evidence that no other avenue of initial intrusion was present, the change in behavior on an administrative level points to a complete takeover of the Exchange server, rather than the compromise of a single Outlook Web Application account.

To conduct a network scan from an Exchange server, a highly privileged, operating SYSTEM-level account is required. The patch level of the Exchange server at the time of compromise appears to have been up-to-date, at least not offering a threat actor the ability to target a known vulnerability to instantly get SYSTEM-level privileges.

For this reason, Darktrace has inferred that the Exchange server zero-days that became public in early March 2021 were possibly being used in this attack observed in early December 2020.

Internal reconnaissance

As soon as the attackers gained access via the web shell, they used the Exchange server to scan all IPs in a single subnet on ports 80, 135, 445, 8080.

This particular Exchange server had never made such a large number of new failed internal connections to that specific subnet on those key ports. As a result, Darktrace instantly alerted on the anomalous behavior, which was indicative of a network scan.

Autonomous Response

Darktrace RESPOND was in passive mode in the environment, so was not able to take action. In active mode, it would have responded by enforcing the previously learned, normal ‘pattern of life’ of the Exchange server – allowing the server to continue normal business operations (sending and receiving emails) but preventing the network scan and any subsequent activity. These actions would have been carried out via various integrations with the customer’s existing security stack, including Firewalls and Network Access Controls.

Specifically, when the network scanning started, the ‘Antigena Network Scan Block’ was triggered. This means that for several hours, Darktrace RESPOND (Antigena) would have blocked any new outgoing connections from the Exchange server to the scanned subnet on port 80, 135, 445, or 8080, preventing the infected Exchange server from conducting network scanning.

As a result, the attackers would not have been able to conclude anything from their reconnaissance — all their scanning would have returned closed ports. At this point, they would need to stop their attack or resort to other means, likely triggering further detections and further Autonomous Response.

The network scan was the first step touching the internal network. This is therefore a clear case of how Darktrace RESPOND can intercept an attack in seconds, acting at the earliest possible evidence of the intrusion.

Lateral movement

Less than an hour after the internal network scan, the compromised Exchange server was observed writing further web shells to other Exchange servers via internal SMB. Darktrace alerted on this as the initially compromised Exchange server had never accessed the other Exchange servers in this fashion over SMB, let alone writing .aspx files to Program Files remotely.

A single click allowed the security team to pivot from the alert into Darktrace’s Advanced Search, revealing further details about the written files. The full file path for the newly deployed web shells was:

Program Files\Microsoft\Exchange Server\V15\FrontEnd\HttpProxy\owa\auth\Current\themes\errorFS.aspx

The attackers thus used internal SMB to compromise further Exchange servers and deploy more web shells, rather than using the Exchange zero-day exploit again to achieve the same goal. The reason for this is clear: exploits can often be unstable, and an adversary would not want to show their hand unnecessarily if it could be avoided.

While the China Chopper web shell has been deployed with many different names in the past, the file path and file name of the actual .aspx web shell bear very close resemblance to the Hafnium campaign details published by Microsoft and others in March 2021.

As threat actors often reuse naming conventions / TTPs in coherent campaigns, it again indicates that this particular attack was in some way part of the broader campaign observed in early 2021.

Further lateral movement

Minutes later, the attacker conducted further lateral movement by making more SMB drive writes to Domain Controllers. This time the attackers did not upload web shells, but malware, in the form of executables and Windows .bat files.

Darktrace alerted the security team as it was extremely unusual for the Exchange server and its peer group to make SMB drive writes to hidden shares to a Domain Controller, particularly using executables and batch files. The activity was presented to the team in the form of a high-confidence alert such as the anonymized example below.

Figure 2: Example graphic of Darktrace detecting unusual connectivity

The batch file was called ‘a.bat’. At this point, the security team could have created a packet capture for the a.bat file in Darktrace with the click of a button, inspecting the content and details of that script at the time of the intrusion.

Darktrace also listed the credentials involved in the activity, providing context into the compromised accounts. This allows an analyst to pivot rapidly around the data and further understand the scope of the intrusion.

Bird’s-eye perspective

In addition to detecting the malicious activity outlined above, Darktrace’s Cyber AI Analyst autonomously summarized the incident and reported on it, outlining the internal reconnaissance and lateral movement activity in a single, cohesive incident.

The organization has several thousand devices covered by Darktrace’s Enterprise Immune System. Nevertheless, over the period of one week, the Hafnium intrusion was in the top five incidents highlighted in Cyber AI Analyst. Even a small or resource-stretched security team, with only a few minutes available per week to review the highest-severity incidents, could have seen and inspected this threat.

Below is a graphic showing a similar Cyber AI Analyst incident created by Darktrace.

Figure 3: A Cyber AI Analyst report showing unusual SMB activity

How to stop a zero-day

Large scale campaigns which target Internet-facing infrastructure and leverage zero-day exploits will continue to occur regularly, and such attacks will always succeed in evading signature-based detection. However, organizations are not helpless against the next high-profile zero-day or supply chain attack.

Detecting the movements of attackers inside a system and responding to contain in-progress threats is possible before IoCs have been provided. The methods of detection outlined above protected the company against this attack in December, and the same techniques will continue to protect the company against unknown threats in the future.

Learn more about how Darktrace AI has stopped Hafnium cyber-attacks and similar threat actors

Darktrace model detections:

  • Device / New or Uncommon WMI Activity
  • Executable Uploaded to DC
  • Compliance / High Priority Compliance Model Breach
  • Compliance / SMB Drive Write
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Network Scan - Low Anomaly Score
  • Unusual Activity / Unusual Internal Connections

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

September 8, 2025

Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture

Default blog imageDefault blog image

What is the Cyber Assessment Framework?

The Cyber Assessment Framework (CAF) acts as guide for organizations, specifically across essential services, critical national infrastructure and regulated sectors, across the UK for assessing, managing and improving their cybersecurity, cyber resilience and cyber risk profile.

The guidance in the Cyber Assessment Framework aligns with regulations such as The Network and Information Systems Regulations (NIS), The Network and Information Security Directive (NIS2) and the Cyber Security and Resilience Bill.

What’s new with the Cyber Assessment Framework 4.0?

On 6 August 2025, the UK’s National Cyber Security Centre (NCSC) released Cyber Assessment Framework 4.0 (CAF v4.0) a pivotal update that reflects the increasingly complex threat landscape and the regulatory need for organisations to respond in smarter, more adaptive ways.

The Cyber Assessment Framework v4.0 introduces significant shifts in expectations, including, but not limited to:

  • Understanding threats in terms of the capabilities, methods and techniques of threat actors and the importance of maintaining a proactive security posture (A2.b)
  • The use of secure software development principles and practices (A4.b)
  • Ensuring threat intelligence is understood and utilised - with a focus on anomaly-based detection (C1.f)
  • Performance of proactive threat hunting with automation where appropriate (C2.a)

This blog post will focus on these components of the framework. However, we encourage readers to get the full scope of the framework by visiting the NCSC website where they can access the full framework here.

In summary, the changes to the framework send a clear signal: the UK’s technical authority now expects organisations to move beyond static rule-based systems and embrace more dynamic, automated defences. For those responsible for securing critical national infrastructure and essential services, these updates are not simply technical preferences, but operational mandates.

At Darktrace, this evolution comes as no surprise. In fact, it reflects the approach we've championed since our inception.

Why Darktrace? Leading the way since 2013

Darktrace was built on the principle that detecting cyber threats in real time requires more than signatures, thresholds, or retrospective analysis. Instead, we pioneered a self-learning approach powered by artificial intelligence, that understands the unique “normal” for every environment and uses this baseline to spot subtle deviations indicative of emerging threats.

From the beginning, Darktrace has understood that rules and lists will never keep pace with adversaries. That’s why we’ve spent over a decade developing AI that doesn't just alert, it learns, reasons, explains, and acts.

With Cyber Assessment Framework v4.0, the bar has been raised to meet this new reality. For technical practitioners tasked with evaluating their organisation’s readiness, there are five essential questions that should guide the selection or validation of anomaly detection capabilities.

6 Questions you should ask about your security posture to align with CAF v4

1. Can your tools detect threats by identifying anomalies?

Cyber Assessment Framework v4.0 principle C1.f has been added in this version and requires that, “Threats to the operation of network and information systems, and corresponding user and system behaviour, are sufficiently understood. These are used to detect cyber security incidents.”

This marks a significant shift from traditional signature-based approaches, which rely on known Indicators of Compromise (IOCs) or predefined rules to an expectation that normal user and system behaviour is understood to an extent enabling abnormality detection.

Why this shift?

An overemphasis on threat intelligence alone leaves defenders exposed to novel threats or new variations of existing threats. By including reference to “understanding user and system behaviour” the framework is broadening the methods of threat detection beyond the use of threat intelligence and historical attack data.

While CAF v4.0 places emphasis on understanding normal user and system behaviour and using that understanding to detect abnormalities and as a result, adverse activity. There is a further expectation that threats are understood in terms of industry specific issues and that monitoring is continually updated  

Darktrace uses an anomaly-based approach to threat detection which involves establishing a dynamic baseline of “normal” for your environment, then flagging deviations from that baseline — even when there’s no known IoCs to match against. This allows security teams to surface previously unseen tactics, techniques, and procedures in real time, whether it’s:

  • An unexpected outbound connection pattern (e.g., DNS tunnelling);
  • A first-time API call between critical services;
  • Unusual calls between services; or  
  • Sensitive data moving outside normal channels or timeframes.

The requirement that organisations must be equipped to monitor their environment, create an understanding of normal and detect anomalous behaviour aligns closely with Darktrace’s capabilities.

2. Is threat hunting structured, repeatable, and improving over time?

CAF v4.0 introduces a new focus on structured threat hunting to detect adverse activity that may evade standard security controls or when such controls are not deployable.  

Principle C2.a outlines the need for documented, repeatable threat hunting processes and stresses the importance of recording and reviewing hunts to improve future effectiveness. This inclusion acknowledges that reactive threat hunting is not sufficient. Instead, the framework calls for:

  • Pre-determined and documented methods to ensure threat hunts can be deployed at the requisite frequency;
  • Threat hunts to be converted  into automated detection and alerting, where appropriate;  
  • Maintenance of threat hunt  records and post-hunt analysis to drive improvements in the process and overall security posture;
  • Regular review of the threat hunting process to align with updated risks;
  • Leveraging automation for improvement, where appropriate;
  • Focus on threat tactics, techniques and procedures, rather than one-off indicators of compromise.

Traditionally, playbook creation has been a manual process — static, slow to amend, and limited by human foresight. Even automated SOAR playbooks tend to be stock templates that can’t cover the full spectrum of threats or reflect the specific context of your organisation.

CAF v4.0 sets the expectation that organisations should maintain documented, structured approaches to incident response. But Darktrace / Incident Readiness & Recovery goes further. Its AI-generated playbooks are bespoke to your environment and updated dynamically in real time as incidents unfold. This continuous refresh of “New Events” means responders always have the latest view of what’s happening, along with an updated understanding of the AI's interpretation based on real-time contextual awareness, and recommended next steps tailored to the current stage of the attack.

The result is far beyond checkbox compliance: a living, adaptive response capability that reduces investigation time, speeds containment, and ensures actions are always proportionate to the evolving threat.

3. Do you have a proactive security posture?

Cyber Assessment Framework v4.0 does not want organisations to detect threats, it expects them to anticipate and reduce cyber risk before an incident ever occurs. That is s why principle A2.b calls for a security posture that moves from reactive detection to predictive, preventative action.

A proactive security posture focuses on reducing the ease of the most likely attack paths in advance and reducing the number of opportunities an adversary has to succeed in an attack.

To meet this requirement, organisations could benefit in looking for solutions that can:

  • Continuously map the assets and users most critical to operations;
  • Identify vulnerabilities and misconfigurations in real time;
  • Model likely adversary behaviours and attack paths using frameworks like MITRE ATT&CK; and  
  • Prioritise remediation actions that will have the highest impact on reducing overall risk.

When done well, this approach creates a real-time picture of your security posture, one that reflects the dynamic nature and ongoing evolution of both your internal environment and the evolving external threat landscape. This enables security teams to focus their time in other areas such as  validating resilience through exercises such as red teaming or forecasting.

4. Can your team/tools customize detection rules and enable autonomous responses?

CAF v4.0 places greater emphasis on reducing false positives and acting decisively when genuine threats are detected.  

The framework highlights the need for customisable detection rules and, where appropriate, autonomous response actions that can contain threats before they escalate:

The following new requirements are included:  

  • C1.c.: Alerts and detection rules should be adjustable to reduce false positives and optimise responses. Custom tooling and rules are used in conjunction with off the shelf tooling and rules;
  • C1.d: You investigate and triage alerts from all security tools and take action – allowing for improvement and prioritization of activities;
  • C1.e: Monitoring and detection personnel have sufficient understanding of operational context and deal with workload effectively as well as identifying areas for improvement (alert or triage fatigue is not present);
  • C2.a: Threat hunts should be turned into automated detections and alerting where appropriate and automation should be leveraged to improve threat hunting.

Tailored detection rules improve accuracy, while automation accelerates response, both of which help satisfy regulatory expectations. Cyber AI Analyst allows for AI investigation of alerts and can dramatically reduce the time a security team spends on alerts, reducing alert fatigue, allowing more time for strategic initiatives and identifying improvements.

5. Is your software secure and supported?  

CAF v4.0 introduced a new principle which requires software suppliers to leverage an established secure software development framework. Software suppliers must be able to demonstrate:  

  • A thorough understanding of the composition and provenance of software provided;  
  • That the software development lifecycle is informed by a detailed and up to date understanding of threat; and  
  • They can attest to the authenticity and integrity of the software, including updates and patches.  

Darktrace is committed to secure software development and all Darktrace products and internally developed systems are developed with secure engineering principles and security by design methodologies in place. Darktrace commits to the inclusion of security requirements at all stages of the software development lifecycle. Darktrace is ISO 27001, ISO 27018 and ISO 42001 Certified – demonstrating an ongoing commitment to information security, data privacy and artificial intelligence management and compliance, throughout the organisation.  

6. Is your incident response plan built on a true understanding of your environment and does it adapt to changes over time?

CAF v4.0 raises the bar for incident response by making it clear that a plan is only as strong as the context behind it. Your response plan must be shaped by a detailed, up-to-date understanding of your organisation’s specific network, systems, and operational priorities.

The framework’s updates emphasise that:

  • Plans must explicitly cover the network and information systems that underpin your essential functions because every environment has different dependencies, choke points, and critical assets.
  • They must be readily accessible even when IT systems are disrupted ensuring critical steps and contact paths aren’t lost during an incident.
  • They should be reviewed regularly to keep pace with evolving risks, infrastructure changes, and lessons learned from testing.

From government expectation to strategic advantage

Cyber Assessment Framework v4.0 signals a powerful shift in cybersecurity best practice. The newest version sets a higher standard for detection performance, risk management, threat hunting software development and proactive security posture.

For Darktrace, this is validation of the approach we have taken since the beginning: to go beyond rules and signatures to deliver proactive cyber resilience in real-time.

-----

Disclaimer:

This document has been prepared on behalf of Darktrace Holdings Limited. It is provided for information purposes only to provide prospective readers with general information about the Cyber Assessment Framework (CAF) in a cyber security context. It does not constitute legal, regulatory, financial or any other kind of professional advice and it has not been prepared with the reader and/or its specific organisation’s requirements in mind. Darktrace offers no warranties, guarantees, undertakings or other assurances (whether express or implied)  that: (i) this document or its content are  accurate or complete; (ii) the steps outlined herein will guarantee compliance with CAF; (iii) any purchase of Darktrace’s products or services will guarantee compliance with CAF; (iv) the steps outlined herein are appropriate for all customers. Neither the reader nor any third party is entitled to rely on the contents of this document when making/taking any decisions or actions to achieve compliance with CAF. To the fullest extent permitted by applicable law or regulation, Darktrace has no liability for any actions or decisions taken or not taken by the reader to implement any suggestions contained herein, or for any third party products, links or materials referenced. Nothing in this document negates the responsibility of the reader to seek independent legal or other advice should it wish to rely on any of the statements, suggestions, or content set out herein.  

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author

Blog

/

OT

/

September 5, 2025

Rethinking Signature-Based Detection for Power Utility Cybersecurity

Default blog imageDefault blog image

Lessons learned from OT cyber attacks

Over the past decade, some of the most disruptive attacks on power utilities have shown the limits of signature-based detection and reshaped how defenders think about OT security. Each incident reinforced that signatures are too narrow and reactive to serve as the foundation of defense.

2015: BlackEnergy 3 in Ukraine

According to CISA, on December 23, 2015, Ukrainian power companies experienced unscheduled power outages affecting a large number of customers — public reports indicate that the BlackEnergy malware was discovered on the companies’ computer networks.

2016: Industroyer/CrashOverride

CISA describes CrashOverride malwareas an “extensible platform” reported to have been used against critical infrastructure in Ukraine in 2016. It was capable of targeting industrial control systems using protocols such as IEC‑101, IEC‑104, and IEC‑61850, and fundamentally abused legitimate control system functionality to deliver destructive effects. CISA emphasizes that “traditional methods of detection may not be sufficient to detect infections prior to the malware execution” and recommends behavioral analysis techniques to identify precursor activity to CrashOverride.

2017: TRITON Malware

The U.S. Department of the Treasury reports that the Triton malware, also known as TRISIS or HatMan, was “designed specifically to target and manipulate industrial safety systems” in a petrochemical facility in the Middle East. The malware was engineered to control Safety Instrumented System (SIS) controllers responsible for emergency shutdown procedures. During the attack, several SIS controllers entered a failed‑safe state, which prevented the malware from fully executing.

The broader lessons

These events revealed three enduring truths:

  • Signatures have diminishing returns: BlackEnergy showed that while signatures can eventually identify adapted IT malware, they arrive too late to prevent OT disruption.
  • Behavioral monitoring is essential: CrashOverride demonstrated that adversaries abuse legitimate industrial protocols, making behavioral and anomaly detection more effective than traditional signature methods.
  • Critical safety systems are now targets: TRITON revealed that attackers are willing to compromise safety instrumented systems, elevating risks from operational disruption to potential physical harm.

The natural progression for utilities is clear. Static, file-based defenses are too fragile for the realities of OT.  

These incidents showed that behavioral analytics and anomaly detection are far more effective at identifying suspicious activity across industrial systems, regardless of whether the malicious code has ever been seen before.

Strategic risks of overreliance on signatures

  • False sense of security: Believing signatures will block advanced threats can delay investment in more effective detection methods.
  • Resource drain: Constantly updating, tuning, and maintaining signature libraries consumes valuable staff resources without proportional benefit.
  • Adversary advantage: Nation-state and advanced actors understand the reactive nature of signature defenses and design attacks to circumvent them from the start.

Recommended Alternatives (with real-world OT examples)

 Alternative strategies for detecting cyber attacks in OT
Figure 1: Alternative strategies for detecting cyber attacks in OT

Behavioral and anomaly detection

Rather than relying on signatures, focusing on behavior enables detection of threats that have never been seen before—even trusted-looking devices.

Real-world insight:

In one OT setting, a vendor inadvertently left a Raspberry Pi on a customer’s ICS network. After deployment, Darktrace’s system flagged elastic anomalies in its HTTPS and DNS communication despite the absence of any known indicators of compromise. The alerting included sustained SSL increases, agent‑beacon activity, and DNS connections to unusual endpoints, revealing a possible supply‑chain or insider risk invisible to static tools.  

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Threat intelligence sharing & building toward zero-trust philosophy

Frameworks such as MITRE ATT&CK for ICS provide a common language to map activity against known adversary tactics, helping teams prioritize detections and response strategies. Similarly, information-sharing communities like E-ISAC and regional ISACs give utilities visibility into the latest tactics, techniques, and procedures (TTPs) observed across the sector. This level of intel can help shift the focus away from chasing individual signatures and toward building resilience against how adversaries actually operate.

Real-world insight:

Darktrace’s AI embodies zero‑trust by assuming breach potential and continually evaluating all device behavior, even those deemed trusted. This approach allowed the detection of an anomalous SharePoint phishing attempt coming from a trusted supplier, intercepted by spotting subtle patterns rather than predefined rules. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on critical-national infrastructure.

This reinforces the need to monitor behavioral deviations across the supply chain, not just known bad artifacts.

Defense-in-Depth with OT context & unified visibility

OT environments demand visibility that spans IT, OT, and IoT layers, supported by risk-based prioritization.

Real-world insight:

Darktrace / OT offers unified AI‑led investigations that break down silos between IT and OT. Smaller teams can see unusual outbound traffic or beaconing from unknown OT devices, swiftly investigate across domains, and get clear visibility into device behavior, even when they lack specialized OT security expertise.  

Moreover, by integrating contextual risk scoring, considering real-world exploitability, device criticality, firewall misconfiguration, and legacy hardware exposure, utilities can focus on the vulnerabilities that genuinely threaten uptime and safety, rather than being overwhelmed by CVE noise.  

Regulatory alignment and positive direction

Industry regulations are beginning to reflect this evolution in strategy. NERC CIP-015 requires internal network monitoring that detects anomalies, and the standard references anomalies 15 times. In contrast, signature-based detection is not mentioned once.

This regulatory direction shows that compliance bodies understand the limitations of static defenses and are encouraging utilities to invest in anomaly-based monitoring and analytics. Utilities that adopt these approaches will not only be strengthening their resilience but also positioning themselves for regulatory compliance and operational success.

Conclusion

Signature-based detection retains utility for common IT malware, but it cannot serve as the backbone of security for power utilities. History has shown that major OT attacks are rarely stopped by signatures, since each campaign targets specific systems with customized tools. The most dangerous adversaries, from insiders to nation-states, actively design their operations to avoid detection by signature-based tools.

A more effective strategy prioritizes behavioral analytics, anomaly detection, and community-driven intelligence sharing. These approaches not only catch known threats, but also uncover the subtle anomalies and novel attack techniques that characterize tomorrow’s incidents.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI