ブログ
/
/
October 4, 2020

Wide Scale Email Compromise Due to Mimecast Miss

Learn how a Mimecast misstep led to a large-scale email compromise and how DarkTrace AI detected the threat. Stay informed and protected against cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Oct 2020

In the last few years, email attacks have rapidly increased in volume and sophistication, with well-researched and convincing impersonation attacks accompanying rising cases of account takeovers. Their sophistication has particularly accelerated over the course of 2020, with globally pertinent news and more businesses embracing new ways of working proving to be fertile content for email attacks.

In this threat landscape, traditional email tools – which create rules for what ‘bad’ emails look like based on past campaigns – are missing these novel and sophisticated hoax emails.

This blog looks at an Australian logistics company that had Mimecast operating in its Microsoft 365 environment, but moved to an autonomous approach to email security when a malicious email — deemed benign by all other tools — was detected by Darktrace’s AI.

The company was trialling Antigena Email which was installed in passive mode, meaning it wasn’t configured to actively interfere. However, looking into the email dashboard allows us to see what actions the technology would have taken – and the consequences of relying purely on gateways to stop advanced threats.

Without AI taking action, compromising one employee’s email account was all the attacker needed to continue making headway throughout the business. The attacker accessed several sensitive files, gathering details of employees and credit card transactions, and then began communicating with others in the organization, sending out over two hundred further emails to take hold of more employee accounts. This activity was picked up in real time by Darktrace’s Microsoft 365 SaaS Module.

Details of the attack

The company was under sustained attack from a cyber-criminal who had already performed account hijacks on a number of their trusted partners. Abusing their trusted relationships, the attacker sent out several tailored emails from these partners’ accounts to the Australian company. All used the same convention in the subject – RFP for [compromised company’s name] – and all appeared to be credential harvesting.

Figure 1: A sample of the malicious emails from the hijacked accounts; the red icon indicating that Antigena Email would have held these emails back

Each of these emails contained a malicious payload, which was a file storage (SharePoint) link, hidden behind the below text. It’s likely the attacker did this to bypass mail link analysis. Mimecast did rewrite the link for analysis, but it failed to identify it as malicious.

Figure 2: Darktrace surfaces the text behind which the link was hidden

When clicked on, the link took the victim to a fake Microsoft login page for credential harvesting. This was an accurate replica of a genuine login page and sent email and password combinations directly to the attacker for further account compromise.

Figure 3: The fake Microsoft login page

A number of employees read the email, including the CEO; however only one person – a general manager – appeared to get their email account hijacked by the attacker.

Figure 4: An interactive snapshot of Antigena Email’s user interface

About three hours after opening the malicious email, an anomalous SaaS login was detected on the account from an IP address not seen across the business before.

Open source analysis of the IP address showed that it was a high fraud risk ISP, which runs anonymizing VPNs and servers – this may have been how the attacker overcame geofencing rules.

Shortly afterwards, Darktrace detected an anonymous sharing link being created for a password file.

Figure 5: Darktrace’s SaaS Module revealing the anomalous creation of a link

Darktrace revealed that this file was subsequently accessed by the anomalous IP address. Deeper analysis showed that the attacker repeated this methodology, making previously protected resources publicly available, before immediately accessing them publicly via the same IP address. Darktrace AI observed the attacker accessing potentially sensitive information, including a file that appeared to hold information about credit card transactions, as well as a document containing passwords.

Figure 6: Darktrace’s SaaS Console surfaces the unusual activity on the compromised account

Perpetuating the attack

The following day, after the attacker had exhausted all sensitive information they could elicit from the compromised email account, they then used that account to send out further malicious emails to trusted business associates using the same methodology as before – sending fake and targeted RFPs in an attempt to compromise credentials. Darktrace’s SaaS Module identified this anomalous behavior, graphically revealing that the attacker sent out over 1,600 tailored emails over the course of 25 minutes.

Figure 7: A graphical representation of the burst of emails sent over a 25 minute period

Why AI is needed to fight modern email threats

For the logistics company in question, this incident served as a wake-up call. The Managed Security Service Provider (MSSP) running their cloud security was completely unaware of the account takeover, which was detected by Darktrace’s SaaS Module. The organization realised that today’s email security challenge requires best in class technologies that can not only prevent phishing emails from reaching the inbox, but detect account takeovers and malicious outbound emails sent from a compromised account.

This incident caused the organization to deploy Antigena Email in active mode, allowing the technology to stop the most subtle and targeted threats that attempt to enter through the inbox based on its nuanced and contextual understanding of the normal ‘pattern of life’ for every user and device.

The reality is, hundreds of emails like this trick not only humans, but traditional security tools every day. It’s clear that when it comes to the growing email security challenge, the status quo is no longer good enough. With the modern workforce more dispersed and agile than ever, there is a growing need to protect remote users across SaaS collaboration platforms, whilst neutralizing email attacks before they reach the inbox.

Thanks to Darktrace analyst Liam Dermody for his insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ