ブログ
/
AI
/
July 16, 2025

サイバーセキュリティのためのAI成熟度モデルの紹介

サイバーセキュリティのためのAI成熟度モデルは、実際のユースケースとエキスパートの知見に基づいた、この種の指針の中でも最も詳細なガイドです。CISOが戦略的な意思決定を行うための力となり、どのAIを導入すべきかだけではなく、組織を段階的に強化し優れた成果を得るためにどのように進めるべきかを知ることができます。
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jul 2025

サイバーセキュリティへのAIの導入:宣伝文句を超えて

今日のセキュリティオペレーションはパラドックスに直面しています。業界ではAI(Artificial Intelligence)が全面的な変革を約束し、ルーチンタスクを自動化することにより検知と対処が強化されると言われています。しかしその一方で、セキュリティリーダーは意味のあるイノベーションとベンダーの宣伝文句を区別しなければならないという大きなプレッシャーに直面しています。

CISOとセキュリティチームがこの状況を乗り越えるのを支援するため、私たちは業界で最も詳細、かつアクション可能なAI成熟度モデルを作成しました。AIおよびサイバーセキュリティ分野のエキスパートと協力して作成したこの枠組みは、セキュリティライフサイクル全体を通じてAIの導入を理解し、測定し、進めていくためのしっかりとした道筋を提供します。

なぜ成熟度モデル?なぜ今必要?

セキュリティリーダー達との対話と調査の中で繰り返し浮かび上がってきたテーマがあります。

それは、AIソリューションはまったく不足していないが、AIのユースケースの明瞭性と理解が不足している、ということです。

事実、Gartner社は「2027年までに、エージェント型AIプロジェクトの40%以上が、コスト上昇、不明瞭なビジネス上の価値、あるいは不十分なリスク制御を理由として打ち切られるだろう」と予測しています。多くのセキュリティチームが実験を行っていますが、その多くは意味のある成果を得られていません。セキュリティの向上を評価し情報に基づいた投資を行うための、標準化された方法に対する必要性はかつてなく高まっています。

AI成熟度モデルが作成されたのはこのような背景によるものであり、これは次を行うための戦略的枠組みです:

  • 人手によるプロセス(L0)からAIへの委任(L4)に至る5段階の明確なAI成熟度を定義
  • エージェント型生成AIと専用AIエージェントシステムから得られる結果を区別
  • リスク管理、脅威検知、アラートトリアージ、インシデント対応といった中核的な機能にわたって評価
  • AI成熟度を、リスクの削減、効率の向上、スケーラブルなオペレーションなど、現実の成果に対応させる

[related-resource]

このモデルで成熟度はどのように評価されるか?

「サイバーセキュリティにおけるAI成熟度モデル」は、世界で10,000社に及ぶDarktraceの自己学習型AIおよびCyber AI Analystの導入例から得られたセキュリティオペレーションの知見に基づいています。抽象的な理論やベンダーのベンチマークに頼るのではなく、このモデルは実際にセキュリティチームが直面している課題に基づき、AIがどこに導入されているか、どのように使用されているか、そしてどのような成果をもたらしているかを反映しています。

こうした現実に即した基盤により、このモデルはAI成熟度に対する実務的な、体験に基づいた視点を提供します。セキュリティチームが現在の状態を把握し、同じような組織がどのように進化しているかに基づいて現実的な次のステップを知るのに役立ちます。

Darktraceを選ぶ理由

AIは2013年のダークトレースの設立以来そのミッションの中心であり、単なる機能ではなく、企業の基盤です。10年以上にわたりAIを開発し現実のセキュリティ環境にAIを適用してきた経験から、私たちはAIがどこに有効で、どこに有効でないか、そしてAIから最も大きな価値を得るにはどうすべきかを学びました。

私たちは、現代のビジネスが膨大な、相互に接続されたエコシステム内で動いていること、そしてそこには従来のサイバーセキュリティアプローチの維持を不可能にする新たな複雑さや脆弱さが生まれていることを知っています。多くのベンダーは機械学習を使用していますが、AIツールはそれぞれ異なり、どれも同じように作られているわけではありません。

Darktraceの自己学習型AIは多層的なAIアプローチを使用して、それぞれの組織から学習することにより、現代の高度な脅威に対するプロアクティブかつリジリエントな防御を提供します。機械学習、深層学習、LLM、自然言語処理を含む多様なAIテクニックを戦略的に組み合わせ、連続的、階層的に統合することにより、私たちの多層的AIアプローチはそれぞれの組織専用の、変化する脅威ランドスケープに適応する強力な防御メカニズムを提供します。

この成熟度モデルはこうした知見を反映し、セキュリティリーダーが組織の人、プロセス、ツールに適した適切な道筋を見つけるのに役立ちます。

今日のセキュリティチームは次のような重要な問いに直面しています:

  • AIを具体的に何のために使うべきか?
  • 他のチームはどのように使っているのか?そして何が機能しているのか?
  • ベンダーはどのようなツールを提供しているのか、そして何が単なる宣伝文句なのか?
  • AIはSOCの人員を置き換える可能性があるのか?

これらはもっともな質問ですが、簡単に答えられるとは限りません。それが、私たちがこのモデルを作成した理由です。セキュリティリーダーが単なるバズワードに惑わされず、SOC全体にAIを適用するための明確かつ現実的な計画を作成するのを助けるために、このモデルが作成されました。

構成:実験から自律性まで

このモデルは5つの成熟段階で構成されています:

L0 –  人手によるオペレーション:プロセスはほとんどが人手によるものであり、一部のタスクにのみ限定的な自動化が使用されます。

L1 –  自動化ルール:人手により管理されるか、外部ソースからの自動化ルールとロジックが可能な範囲で使用されます。    

L2 –  AIによる支援:AIは調査を支援するが、良い判断をするかどうかは信頼されていません。これには人手によるエラーの監視が必要な生成AIエージェントが含まれます。    

L3 –  AIコラボレーション:組織のテクノロジーコンテキストを理解した専用のサイバーセキュリティAIエージェントシステムに特定のタスクと判断を任せます。生成AIはエラーが許容可能な部分に使用が限定されます。  

L4 –  AIに委任:組織のオペレーションと影響について格段に幅広いコンテキストを備えた専用のAIエージェントがほとんどのサイバーセキュリティタスクと判断を単独で行い、ハイレベルの監督しか必要としません。

それぞれの段階が、テクノロジーだけではなく、人とプロセスもシフトすることを表しています。AIが成熟するにつれ、アナリストの役割は実行者から戦略的監督者へと進化します。

セキュリティリーダーにとっての戦略上の利益

成熟度モデルの目的はテクノロジーの導入だけではなく、AIへの投資を測定可能なオペレーションの成果に結びつけることです。AIによって次のことが可能になります:

SOCの疲労は切実、AIが軽減に貢献

ほとんどのセキュリティチームは現在もアラートの量、調査の遅延、受け身のプロセスに苦労しています。しかしAIの導入には一貫性がなく、多くの場合サイロ化しています。上手く統合すれば、AIはセキュリティチームの効率を高めるための、意味のある違いをもたらすことができます。

生成AIはエラーが起こりやすく、人間による厳密な監視が必要

生成AIを使ったエージェント型システムについては多くの誇大広告が見られますが、セキュリティチームはエージェント型生成AIシステムの不正確性とハルシネーションの可能性についても考慮に入れる必要があります。

AIの本当の価値はセキュリティの進化にある

AI導入の最も大きな成果は、リスク対策から検知、封じ込め、修復に至るまで、セキュリティライフサイクル全体にAIを統合することから得られます。

AIへの信頼と監督は初期段階で必須となるが次第に変化する

導入の初期段階では、人間が完全にコントロールします。L3からL4に到達する頃には、AIシステムは決められた境界内で独立して機能するようになり、人間の役割は戦略的監督になります。

人間の役割が意味のあるものに変化する

AIが成熟すると、アナリストの役割は労働集約的な作業から高価値な意思決定へと引き上げられ、重要な、ビジネスへの影響が大きいアクティビティやプロセスの改良、AIに対するガバナンスなどに集中できるようになります。

成熟度を定義するのは宣伝文句ではなく成果

AIの成熟度は単にテクノロジーが存在しているかどうかではなく、リスク削減、対処時間、オペレーションのリジリエンスに対して測定可能な効果が見られるかどうかで決まります。

[related-resource]

AI成熟度モデルの各段階の成果

セキュリティ組織は人手によるオペレーションからAIへの委任へと進むにつれてサイバーセキュリティの進化を体験するでしょう。成熟度の各レベルは、効率、精度、戦略的価値の段階的変化を表しています。

L0 – 人手によるオペレーション

この段階では、アナリストが手動でトリアージ、調査、パッチ適用、報告を、基本的な自動化されていないツールを使って行います。その結果、受け身の労働集約的なオペレーションになり、ほとんどのアラートは未調査のままとなり、リスク管理にも一貫性がありません。

L1 – 自動化ルール

この段階では、アナリストがSOARあるいはXDRといったルールベースの自動化ツールを管理します。これにより多少の効率化は図れますが、頻繁な調整を必要とします。オペレーションは依然として人員数と事前に定義されたワークフローに制限されます。

L2 – AIによる支援

この段階では、AIが調査、まとめ、トリアージを支援し、アナリストの作業負荷を軽減しますが、エラーの可能性もあるためきめ細かな監督が必要です。検知は向上しますが、自律的な意思決定に対する信頼度は限定的です。

L3 – AIコラボレーション

この段階では、AIが調査全体を行いアクションを提示します。アナリストは高リスクの判断を行うことと、検知戦略の精緻化に集中します。組織のテクノロジーコンテキストを考慮した専用のエージェント型AIエージェントシステムに特定のタスクが任され、精度と優先度の判断が向上します。

L4 – AIに委任

この段階では、専用のAIエージェントシステムが単独でほとんどのセキュリティタスクをマシンスピードで処理し、人間のチームはハイレベルの戦略的監督を行います。このことは、人間のセキュリティチームが最も時間と労力を使うアクティビティはプロアクティブな活動に向けられ、AIがルーチンのサイバーセキュリティ作業を処理することを意味します。

専用のAIエージェントシステムはビジネスへの影響を含めた深いコンテキストを理解して動作し、高速かつ効果的な判断を行います。

AI成熟度モデルのどこに位置しているかを調べる

「サイバーセキュリティのためのAI成熟度モデル」 ホワイトペーパーを入手し、評価を行ってみましょう。自社の現在の成熟段階をベンチマークし、主なギャップがどこにあるのかを調べ、次のステップの優先順位を特定するためににお役立てください。

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ