ブログ
/
AI
/
July 16, 2025

サイバーセキュリティのためのAI成熟度モデルの紹介

サイバーセキュリティのためのAI成熟度モデルは、実際のユースケースとエキスパートの知見に基づいた、この種の指針の中でも最も詳細なガイドです。CISOが戦略的な意思決定を行うための力となり、どのAIを導入すべきかだけではなく、組織を段階的に強化し優れた成果を得るためにどのように進めるべきかを知ることができます。
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jul 2025

サイバーセキュリティへのAIの導入:宣伝文句を超えて

今日のセキュリティオペレーションはパラドックスに直面しています。業界ではAI(Artificial Intelligence)が全面的な変革を約束し、ルーチンタスクを自動化することにより検知と対処が強化されると言われています。しかしその一方で、セキュリティリーダーは意味のあるイノベーションとベンダーの宣伝文句を区別しなければならないという大きなプレッシャーに直面しています。

CISOとセキュリティチームがこの状況を乗り越えるのを支援するため、私たちは業界で最も詳細、かつアクション可能なAI成熟度モデルを作成しました。AIおよびサイバーセキュリティ分野のエキスパートと協力して作成したこの枠組みは、セキュリティライフサイクル全体を通じてAIの導入を理解し、測定し、進めていくためのしっかりとした道筋を提供します。

なぜ成熟度モデル?なぜ今必要?

セキュリティリーダー達との対話と調査の中で繰り返し浮かび上がってきたテーマがあります。

それは、AIソリューションはまったく不足していないが、AIのユースケースの明瞭性と理解が不足している、ということです。

事実、Gartner社は「2027年までに、エージェント型AIプロジェクトの40%以上が、コスト上昇、不明瞭なビジネス上の価値、あるいは不十分なリスク制御を理由として打ち切られるだろう」と予測しています。多くのセキュリティチームが実験を行っていますが、その多くは意味のある成果を得られていません。セキュリティの向上を評価し情報に基づいた投資を行うための、標準化された方法に対する必要性はかつてなく高まっています。

AI成熟度モデルが作成されたのはこのような背景によるものであり、これは次を行うための戦略的枠組みです:

  • 人手によるプロセス(L0)からAIへの委任(L4)に至る5段階の明確なAI成熟度を定義
  • エージェント型生成AIと専用AIエージェントシステムから得られる結果を区別
  • リスク管理、脅威検知、アラートトリアージ、インシデント対応といった中核的な機能にわたって評価
  • AI成熟度を、リスクの削減、効率の向上、スケーラブルなオペレーションなど、現実の成果に対応させる

[related-resource]

このモデルで成熟度はどのように評価されるか?

「サイバーセキュリティにおけるAI成熟度モデル」は、世界で10,000社に及ぶDarktraceの自己学習型AIおよびCyber AI Analystの導入例から得られたセキュリティオペレーションの知見に基づいています。抽象的な理論やベンダーのベンチマークに頼るのではなく、このモデルは実際にセキュリティチームが直面している課題に基づき、AIがどこに導入されているか、どのように使用されているか、そしてどのような成果をもたらしているかを反映しています。

こうした現実に即した基盤により、このモデルはAI成熟度に対する実務的な、体験に基づいた視点を提供します。セキュリティチームが現在の状態を把握し、同じような組織がどのように進化しているかに基づいて現実的な次のステップを知るのに役立ちます。

Darktraceを選ぶ理由

AIは2013年のダークトレースの設立以来そのミッションの中心であり、単なる機能ではなく、企業の基盤です。10年以上にわたりAIを開発し現実のセキュリティ環境にAIを適用してきた経験から、私たちはAIがどこに有効で、どこに有効でないか、そしてAIから最も大きな価値を得るにはどうすべきかを学びました。

私たちは、現代のビジネスが膨大な、相互に接続されたエコシステム内で動いていること、そしてそこには従来のサイバーセキュリティアプローチの維持を不可能にする新たな複雑さや脆弱さが生まれていることを知っています。多くのベンダーは機械学習を使用していますが、AIツールはそれぞれ異なり、どれも同じように作られているわけではありません。

Darktraceの自己学習型AIは多層的なAIアプローチを使用して、それぞれの組織から学習することにより、現代の高度な脅威に対するプロアクティブかつリジリエントな防御を提供します。機械学習、深層学習、LLM、自然言語処理を含む多様なAIテクニックを戦略的に組み合わせ、連続的、階層的に統合することにより、私たちの多層的AIアプローチはそれぞれの組織専用の、変化する脅威ランドスケープに適応する強力な防御メカニズムを提供します。

この成熟度モデルはこうした知見を反映し、セキュリティリーダーが組織の人、プロセス、ツールに適した適切な道筋を見つけるのに役立ちます。

今日のセキュリティチームは次のような重要な問いに直面しています:

  • AIを具体的に何のために使うべきか?
  • 他のチームはどのように使っているのか?そして何が機能しているのか?
  • ベンダーはどのようなツールを提供しているのか、そして何が単なる宣伝文句なのか?
  • AIはSOCの人員を置き換える可能性があるのか?

これらはもっともな質問ですが、簡単に答えられるとは限りません。それが、私たちがこのモデルを作成した理由です。セキュリティリーダーが単なるバズワードに惑わされず、SOC全体にAIを適用するための明確かつ現実的な計画を作成するのを助けるために、このモデルが作成されました。

構成:実験から自律性まで

このモデルは5つの成熟段階で構成されています:

L0 –  人手によるオペレーション:プロセスはほとんどが人手によるものであり、一部のタスクにのみ限定的な自動化が使用されます。

L1 –  自動化ルール:人手により管理されるか、外部ソースからの自動化ルールとロジックが可能な範囲で使用されます。    

L2 –  AIによる支援:AIは調査を支援するが、良い判断をするかどうかは信頼されていません。これには人手によるエラーの監視が必要な生成AIエージェントが含まれます。    

L3 –  AIコラボレーション:組織のテクノロジーコンテキストを理解した専用のサイバーセキュリティAIエージェントシステムに特定のタスクと判断を任せます。生成AIはエラーが許容可能な部分に使用が限定されます。  

L4 –  AIに委任:組織のオペレーションと影響について格段に幅広いコンテキストを備えた専用のAIエージェントがほとんどのサイバーセキュリティタスクと判断を単独で行い、ハイレベルの監督しか必要としません。

それぞれの段階が、テクノロジーだけではなく、人とプロセスもシフトすることを表しています。AIが成熟するにつれ、アナリストの役割は実行者から戦略的監督者へと進化します。

セキュリティリーダーにとっての戦略上の利益

成熟度モデルの目的はテクノロジーの導入だけではなく、AIへの投資を測定可能なオペレーションの成果に結びつけることです。AIによって次のことが可能になります:

SOCの疲労は切実、AIが軽減に貢献

ほとんどのセキュリティチームは現在もアラートの量、調査の遅延、受け身のプロセスに苦労しています。しかしAIの導入には一貫性がなく、多くの場合サイロ化しています。上手く統合すれば、AIはセキュリティチームの効率を高めるための、意味のある違いをもたらすことができます。

生成AIはエラーが起こりやすく、人間による厳密な監視が必要

生成AIを使ったエージェント型システムについては多くの誇大広告が見られますが、セキュリティチームはエージェント型生成AIシステムの不正確性とハルシネーションの可能性についても考慮に入れる必要があります。

AIの本当の価値はセキュリティの進化にある

AI導入の最も大きな成果は、リスク対策から検知、封じ込め、修復に至るまで、セキュリティライフサイクル全体にAIを統合することから得られます。

AIへの信頼と監督は初期段階で必須となるが次第に変化する

導入の初期段階では、人間が完全にコントロールします。L3からL4に到達する頃には、AIシステムは決められた境界内で独立して機能するようになり、人間の役割は戦略的監督になります。

人間の役割が意味のあるものに変化する

AIが成熟すると、アナリストの役割は労働集約的な作業から高価値な意思決定へと引き上げられ、重要な、ビジネスへの影響が大きいアクティビティやプロセスの改良、AIに対するガバナンスなどに集中できるようになります。

成熟度を定義するのは宣伝文句ではなく成果

AIの成熟度は単にテクノロジーが存在しているかどうかではなく、リスク削減、対処時間、オペレーションのリジリエンスに対して測定可能な効果が見られるかどうかで決まります。

[related-resource]

AI成熟度モデルの各段階の成果

セキュリティ組織は人手によるオペレーションからAIへの委任へと進むにつれてサイバーセキュリティの進化を体験するでしょう。成熟度の各レベルは、効率、精度、戦略的価値の段階的変化を表しています。

L0 – 人手によるオペレーション

この段階では、アナリストが手動でトリアージ、調査、パッチ適用、報告を、基本的な自動化されていないツールを使って行います。その結果、受け身の労働集約的なオペレーションになり、ほとんどのアラートは未調査のままとなり、リスク管理にも一貫性がありません。

L1 – 自動化ルール

この段階では、アナリストがSOARあるいはXDRといったルールベースの自動化ツールを管理します。これにより多少の効率化は図れますが、頻繁な調整を必要とします。オペレーションは依然として人員数と事前に定義されたワークフローに制限されます。

L2 – AIによる支援

この段階では、AIが調査、まとめ、トリアージを支援し、アナリストの作業負荷を軽減しますが、エラーの可能性もあるためきめ細かな監督が必要です。検知は向上しますが、自律的な意思決定に対する信頼度は限定的です。

L3 – AIコラボレーション

この段階では、AIが調査全体を行いアクションを提示します。アナリストは高リスクの判断を行うことと、検知戦略の精緻化に集中します。組織のテクノロジーコンテキストを考慮した専用のエージェント型AIエージェントシステムに特定のタスクが任され、精度と優先度の判断が向上します。

L4 – AIに委任

この段階では、専用のAIエージェントシステムが単独でほとんどのセキュリティタスクをマシンスピードで処理し、人間のチームはハイレベルの戦略的監督を行います。このことは、人間のセキュリティチームが最も時間と労力を使うアクティビティはプロアクティブな活動に向けられ、AIがルーチンのサイバーセキュリティ作業を処理することを意味します。

専用のAIエージェントシステムはビジネスへの影響を含めた深いコンテキストを理解して動作し、高速かつ効果的な判断を行います。

AI成熟度モデルのどこに位置しているかを調べる

「サイバーセキュリティのためのAI成熟度モデル」 ホワイトペーパーを入手し、評価を行ってみましょう。自社の現在の成熟段階をベンチマークし、主なギャップがどこにあるのかを調べ、次のステップの優先順位を特定するためににお役立てください。

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ashanka Iddya
Senior Director, Product Marketing

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

Default blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

Default blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI