Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Share
24
Oct 2018
Since July 2018, Darktrace has identified an increasing number of cyber-attacks targeting law firms. Concerningly, the attacks are emerging not from opportunistic malware, like banking trojans, but threat actors who actively conduct cyber-intrusions, seeking to exfiltrate data from these organizations.
Perfect targets
Law firms are actively pursued because their systems contain the sensitive data of many other organizations. The essence of a lawyer’s work involves managing confidential client information. Firms are privy to a huge variety of valuable data, from tax affairs, to intellectual property. Consequently, law firms’ ability to protect highly-sensitive information is critical; a successful cyber-attack might cause reputational damage resulting in the diminishing of their most valuable asset – clients’ trust.
Further challenges
As an industry, law is structured around sharing revenues among a minimal number of highly qualified professionals. As such, they can rarely employ large IT teams – and even smaller IT security departments. With the increased number of attacks seen in recent years, as well as the added risks of the cloud, and the Internet of Things, security teams lack the capacity to defend their networks against the sophisticated, machine-speed attacks which characterize today’s threat landscape.
In addition, lawyers often have to research obscure or potentially illegal activities, while communicating and receiving files from third parties. This complicates any attempt to impose and regulate highly restrictive security policies, placing a significant burden on small, overstretched security teams.
Living off the land
Interestingly, the recent surge of targeted attacks against law firms is unified by the methods used. The attacks were all performed using publicly available tools, including: Mimikatz (for credentials dumping), Powershell Empire (for Command & Control communication), Dameware (additional C2/backdoor), and PsExec variants such as the Impacket Python variant of PsExec (for lateral movement).
Perhaps surprisingly, using generic methods against such high-level targets is actually beneficial to the attacker. Adopting mainly publicly available tools, rather than individually crafted malware, makes attribution much harder.
Although some of these tools, such as Mimikatz, have to be downloaded into the environment; the stealthiest, like Dameware or PsExec, are able to use the infrastructure within their environment. Known as ‘living off the land’, these tools are almost undetectable by traditional security approaches, as their malicious activity is designed to blend in with legitimate system administration work.
Case study
In July 2018, Darktrace discovered the illegitimate use of Powershell Empire – a code capable of ‘living off the land’. When monitored by human surveillance alone, this extremely stealthy tool would normally go undetected, camouflaged by system behavior.
Unlike traditional security approaches, Darktrace does not use rules and signatures. Instead, it learns about the activity of the network, itself. This meant Darktrace was able to observe the initial download of the malware, subsequent reconnaissance and ensuing C2 traffic.
Consequently, we were able to report that an incident had occurred involving a probable Trickbot banking trojan infection and new use of a Remote Access Tool.
This was accompanied by the following visuals:
Graph showing all breaching connections from the source device over time, with breaches shown as colored dots. This begins with the download of the masqueraded executable file, and goes up to the present time. The vast majority of these model breaches are likely related to the suspected malicious activity.
Darktrace’s AI capability meant that the Enterprise Immune System detected this sophisticated and subtle threat immediately – before it had time to do any damage.
An excerpt from the Event Log at the time of the first Dameware activity from this device, shortly after this incident began.
AI securing the law sector
As seen above, cyber-attackers are constantly discovering novel ways of evading rule-based security systems. Attackers ‘living off the land’ are generally too subtly anomalous for humans to identify. Darktrace’s machine learning has the unique ability to learn the ‘pattern of life’ of any network which means it is able to distinguish this behavior, as it is still unusual compared to legitimate administrative functions.
Darktrace AI secures law firms all over the world. For small security teams, AI is a game changer. Through the use of machine learning, Darktrace does the heavy lifting of separating interesting anomalies from ordinary noise. Many firms also use Darktrace Antigena as a ‘virtual analyst’ to supplement the work of their staff.
Antigena acts at machine speed, autonomously responding to threats as they emerge in real time, even after hours and on the weekends. Antigena slows down, or even stops, traffic to the affected parts of the network before any data can be compromised. This buys security teams crucial time to fix the issue – before it’s too late.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
The benefits of bringing together network and email security
In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.
This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.
A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.
Technical advantages
Pre-alert intelligence: Gathering data before the threat strikes
Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.
By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.
That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.
This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.
Alert-related intelligence: Connecting the dots in real time
Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.
Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.
This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.
Operational advantages
Streamlining SecOps across teams
In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.
When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.
The outcome is more than convenience: it’s faster, more informed decision-making across the board.
Reducing time-to-meaning and enabling faster response
A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.
Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.
Commercial advantages
While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.
On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.
With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.
Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.
Unpacking the Salesloft Incident: Insights from Darktrace Observations
Introduction
On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2]. The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].
The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].
Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].
This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.
By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.
The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.
By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place
What happened?
The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.
Initial Intrusion
The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.
Internal Reconnaissance & Data Exfiltration
Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.
Lateral Movement
Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.
Accomplishing the mission
The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.
How did the attack bypass the rest of the security stack?
The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.
Darktrace Coverage
Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.
On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
The login event was associated with the application Drift, further connecting the events to this campaign.
Figure 2: Advanced Search logs showing the Application used to login.
Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].
Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].
Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.
A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.
The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.
Conclusion
In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.
Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)
Appendices
Darktrace Model Detections
· SaaS / Access / Unusual External Source for SaaS Credential Use
· SaaS / Compromise / Login From Rare Endpoint While User Is Active
· SaaS / Compliance / Anomalous Salesforce API Event
Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.